Step |
Hyp |
Ref |
Expression |
1 |
|
crctprop |
|- ( F ( Circuits ` G ) P -> ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
2 |
|
istrl |
|- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
3 |
|
uspgrupgr |
|- ( G e. USPGraph -> G e. UPGraph ) |
4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
6 |
4 5
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
7 |
|
preq2 |
|- ( ( P ` 2 ) = ( P ` 0 ) -> { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 1 ) , ( P ` 0 ) } ) |
8 |
|
prcom |
|- { ( P ` 1 ) , ( P ` 0 ) } = { ( P ` 0 ) , ( P ` 1 ) } |
9 |
7 8
|
eqtrdi |
|- ( ( P ` 2 ) = ( P ` 0 ) -> { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
10 |
9
|
eqcoms |
|- ( ( P ` 0 ) = ( P ` 2 ) -> { ( P ` 1 ) , ( P ` 2 ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
11 |
10
|
eqeq2d |
|- ( ( P ` 0 ) = ( P ` 2 ) -> ( ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } <-> ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) |
12 |
11
|
anbi2d |
|- ( ( P ` 0 ) = ( P ` 2 ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
13 |
12
|
ad2antrr |
|- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) ) ) |
14 |
|
eqtr3 |
|- ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) ) |
15 |
4 5
|
uspgrf |
|- ( G e. USPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
16 |
15
|
adantl |
|- ( ( Fun `' F /\ G e. USPGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
17 |
16
|
adantl |
|- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
18 |
17
|
adantr |
|- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
19 |
|
df-f1 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom ( iEdg ` G ) /\ Fun `' F ) ) |
20 |
19
|
simplbi2 |
|- ( F : ( 0 ..^ ( # ` F ) ) --> dom ( iEdg ` G ) -> ( Fun `' F -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
21 |
|
wrdf |
|- ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) --> dom ( iEdg ` G ) ) |
22 |
20 21
|
syl11 |
|- ( Fun `' F -> ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
23 |
22
|
adantr |
|- ( ( Fun `' F /\ G e. USPGraph ) -> ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
24 |
23
|
adantl |
|- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( F e. Word dom ( iEdg ` G ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) ) |
25 |
24
|
imp |
|- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) |
26 |
|
2nn |
|- 2 e. NN |
27 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 2 ) <-> 2 e. NN ) |
28 |
26 27
|
mpbir |
|- 0 e. ( 0 ..^ 2 ) |
29 |
|
1nn0 |
|- 1 e. NN0 |
30 |
|
1lt2 |
|- 1 < 2 |
31 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
32 |
29 26 30 31
|
mpbir3an |
|- 1 e. ( 0 ..^ 2 ) |
33 |
28 32
|
pm3.2i |
|- ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) |
34 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
35 |
34
|
eleq2d |
|- ( ( # ` F ) = 2 -> ( 0 e. ( 0 ..^ ( # ` F ) ) <-> 0 e. ( 0 ..^ 2 ) ) ) |
36 |
34
|
eleq2d |
|- ( ( # ` F ) = 2 -> ( 1 e. ( 0 ..^ ( # ` F ) ) <-> 1 e. ( 0 ..^ 2 ) ) ) |
37 |
35 36
|
anbi12d |
|- ( ( # ` F ) = 2 -> ( ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) <-> ( 0 e. ( 0 ..^ 2 ) /\ 1 e. ( 0 ..^ 2 ) ) ) ) |
38 |
33 37
|
mpbiri |
|- ( ( # ` F ) = 2 -> ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) ) |
39 |
38
|
ad2antrr |
|- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) ) |
40 |
|
f1cofveqaeq |
|- ( ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ F : ( 0 ..^ ( # ` F ) ) -1-1-> dom ( iEdg ` G ) ) /\ ( 0 e. ( 0 ..^ ( # ` F ) ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> 0 = 1 ) ) |
41 |
18 25 39 40
|
syl21anc |
|- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> 0 = 1 ) ) |
42 |
|
0ne1 |
|- 0 =/= 1 |
43 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
44 |
41 42 43
|
syl6mpi |
|- ( ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
45 |
44
|
adantll |
|- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = ( ( iEdg ` G ) ` ( F ` 1 ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
46 |
14 45
|
syl5 |
|- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 0 ) , ( P ` 1 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
47 |
13 46
|
sylbid |
|- ( ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) /\ F e. Word dom ( iEdg ` G ) ) -> ( ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
48 |
47
|
expimpd |
|- ( ( ( P ` 0 ) = ( P ` 2 ) /\ ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
49 |
48
|
ex |
|- ( ( P ` 0 ) = ( P ` 2 ) -> ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
50 |
|
2a1 |
|- ( ( P ` 0 ) =/= ( P ` 2 ) -> ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
51 |
49 50
|
pm2.61ine |
|- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
52 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
53 |
34 52
|
eqtrdi |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
54 |
53
|
raleqdv |
|- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
55 |
|
2wlklem |
|- ( A. k e. { 0 , 1 } ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
56 |
54 55
|
bitrdi |
|- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
57 |
56
|
anbi2d |
|- ( ( # ` F ) = 2 -> ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
58 |
|
fveq2 |
|- ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = ( P ` 2 ) ) |
59 |
58
|
neeq2d |
|- ( ( # ` F ) = 2 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 2 ) ) ) |
60 |
57 59
|
imbi12d |
|- ( ( # ` F ) = 2 -> ( ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
61 |
60
|
adantr |
|- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom ( iEdg ` G ) /\ ( ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( ( iEdg ` G ) ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) ) ) |
62 |
51 61
|
mpbird |
|- ( ( ( # ` F ) = 2 /\ ( Fun `' F /\ G e. USPGraph ) ) -> ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
63 |
62
|
ex |
|- ( ( # ` F ) = 2 -> ( ( Fun `' F /\ G e. USPGraph ) -> ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
64 |
63
|
com13 |
|- ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( ( Fun `' F /\ G e. USPGraph ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
65 |
64
|
expd |
|- ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( Fun `' F -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
66 |
65
|
3adant2 |
|- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( Fun `' F -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
67 |
6 66
|
syl6bi |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P -> ( Fun `' F -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) ) |
68 |
67
|
impd |
|- ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
69 |
68
|
com23 |
|- ( G e. UPGraph -> ( G e. USPGraph -> ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) ) |
70 |
3 69
|
mpcom |
|- ( G e. USPGraph -> ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
71 |
70
|
com12 |
|- ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
72 |
2 71
|
sylbi |
|- ( F ( Trails ` G ) P -> ( G e. USPGraph -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) ) |
73 |
72
|
imp |
|- ( ( F ( Trails ` G ) P /\ G e. USPGraph ) -> ( ( # ` F ) = 2 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
74 |
73
|
necon2d |
|- ( ( F ( Trails ` G ) P /\ G e. USPGraph ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 2 ) ) |
75 |
74
|
impancom |
|- ( ( F ( Trails ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( G e. USPGraph -> ( # ` F ) =/= 2 ) ) |
76 |
1 75
|
syl |
|- ( F ( Circuits ` G ) P -> ( G e. USPGraph -> ( # ` F ) =/= 2 ) ) |
77 |
76
|
impcom |
|- ( ( G e. USPGraph /\ F ( Circuits ` G ) P ) -> ( # ` F ) =/= 2 ) |