Metamath Proof Explorer


Theorem uspgrun

Description: The union U of two simple pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 16-Oct-2020)

Ref Expression
Hypotheses uspgrun.g
|- ( ph -> G e. USPGraph )
uspgrun.h
|- ( ph -> H e. USPGraph )
uspgrun.e
|- E = ( iEdg ` G )
uspgrun.f
|- F = ( iEdg ` H )
uspgrun.vg
|- V = ( Vtx ` G )
uspgrun.vh
|- ( ph -> ( Vtx ` H ) = V )
uspgrun.i
|- ( ph -> ( dom E i^i dom F ) = (/) )
uspgrun.u
|- ( ph -> U e. W )
uspgrun.v
|- ( ph -> ( Vtx ` U ) = V )
uspgrun.un
|- ( ph -> ( iEdg ` U ) = ( E u. F ) )
Assertion uspgrun
|- ( ph -> U e. UPGraph )

Proof

Step Hyp Ref Expression
1 uspgrun.g
 |-  ( ph -> G e. USPGraph )
2 uspgrun.h
 |-  ( ph -> H e. USPGraph )
3 uspgrun.e
 |-  E = ( iEdg ` G )
4 uspgrun.f
 |-  F = ( iEdg ` H )
5 uspgrun.vg
 |-  V = ( Vtx ` G )
6 uspgrun.vh
 |-  ( ph -> ( Vtx ` H ) = V )
7 uspgrun.i
 |-  ( ph -> ( dom E i^i dom F ) = (/) )
8 uspgrun.u
 |-  ( ph -> U e. W )
9 uspgrun.v
 |-  ( ph -> ( Vtx ` U ) = V )
10 uspgrun.un
 |-  ( ph -> ( iEdg ` U ) = ( E u. F ) )
11 uspgrupgr
 |-  ( G e. USPGraph -> G e. UPGraph )
12 1 11 syl
 |-  ( ph -> G e. UPGraph )
13 uspgrupgr
 |-  ( H e. USPGraph -> H e. UPGraph )
14 2 13 syl
 |-  ( ph -> H e. UPGraph )
15 12 14 3 4 5 6 7 8 9 10 upgrun
 |-  ( ph -> U e. UPGraph )