Step |
Hyp |
Ref |
Expression |
1 |
|
uspgrupgr |
|- ( G e. USPGraph -> G e. UPGraph ) |
2 |
|
uspgrushgr |
|- ( G e. USPGraph -> G e. USHGraph ) |
3 |
1 2
|
jca |
|- ( G e. USPGraph -> ( G e. UPGraph /\ G e. USHGraph ) ) |
4 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
6 |
4 5
|
ushgrf |
|- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
7 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
8 |
|
upgredgss |
|- ( G e. UPGraph -> ( Edg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
9 |
7 8
|
eqsstrrid |
|- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
10 |
|
f1ssr |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
11 |
6 9 10
|
syl2anr |
|- ( ( G e. UPGraph /\ G e. USHGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
12 |
4 5
|
isuspgr |
|- ( G e. UPGraph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
13 |
12
|
adantr |
|- ( ( G e. UPGraph /\ G e. USHGraph ) -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
14 |
11 13
|
mpbird |
|- ( ( G e. UPGraph /\ G e. USHGraph ) -> G e. USPGraph ) |
15 |
3 14
|
impbii |
|- ( G e. USPGraph <-> ( G e. UPGraph /\ G e. USHGraph ) ) |