Step |
Hyp |
Ref |
Expression |
1 |
|
snnzg |
|- ( A e. X -> { A } =/= (/) ) |
2 |
1
|
adantl |
|- ( ( V C_ ( X X. X ) /\ A e. X ) -> { A } =/= (/) ) |
3 |
|
xpco |
|- ( { A } =/= (/) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) = ( ( V " { A } ) X. ( V " { A } ) ) ) |
4 |
2 3
|
syl |
|- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) = ( ( V " { A } ) X. ( V " { A } ) ) ) |
5 |
|
cnvxp |
|- `' ( { A } X. ( V " { A } ) ) = ( ( V " { A } ) X. { A } ) |
6 |
|
ressn |
|- ( V |` { A } ) = ( { A } X. ( V " { A } ) ) |
7 |
6
|
cnveqi |
|- `' ( V |` { A } ) = `' ( { A } X. ( V " { A } ) ) |
8 |
|
resss |
|- ( V |` { A } ) C_ V |
9 |
|
cnvss |
|- ( ( V |` { A } ) C_ V -> `' ( V |` { A } ) C_ `' V ) |
10 |
8 9
|
ax-mp |
|- `' ( V |` { A } ) C_ `' V |
11 |
7 10
|
eqsstrri |
|- `' ( { A } X. ( V " { A } ) ) C_ `' V |
12 |
5 11
|
eqsstrri |
|- ( ( V " { A } ) X. { A } ) C_ `' V |
13 |
|
coss2 |
|- ( ( ( V " { A } ) X. { A } ) C_ `' V -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) C_ ( ( { A } X. ( V " { A } ) ) o. `' V ) ) |
14 |
12 13
|
mp1i |
|- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) C_ ( ( { A } X. ( V " { A } ) ) o. `' V ) ) |
15 |
6 8
|
eqsstrri |
|- ( { A } X. ( V " { A } ) ) C_ V |
16 |
|
coss1 |
|- ( ( { A } X. ( V " { A } ) ) C_ V -> ( ( { A } X. ( V " { A } ) ) o. `' V ) C_ ( V o. `' V ) ) |
17 |
15 16
|
mp1i |
|- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. `' V ) C_ ( V o. `' V ) ) |
18 |
14 17
|
sstrd |
|- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( { A } X. ( V " { A } ) ) o. ( ( V " { A } ) X. { A } ) ) C_ ( V o. `' V ) ) |
19 |
4 18
|
eqsstrrd |
|- ( ( V C_ ( X X. X ) /\ A e. X ) -> ( ( V " { A } ) X. ( V " { A } ) ) C_ ( V o. `' V ) ) |