Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- A = A |
2 |
|
resieq |
|- ( ( A e. X /\ A e. X ) -> ( A ( _I |` X ) A <-> A = A ) ) |
3 |
1 2
|
mpbiri |
|- ( ( A e. X /\ A e. X ) -> A ( _I |` X ) A ) |
4 |
3
|
anidms |
|- ( A e. X -> A ( _I |` X ) A ) |
5 |
4
|
3ad2ant3 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> A ( _I |` X ) A ) |
6 |
|
ustdiag |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( _I |` X ) C_ V ) |
7 |
6
|
ssbrd |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( A ( _I |` X ) A -> A V A ) ) |
8 |
7
|
3adant3 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> ( A ( _I |` X ) A -> A V A ) ) |
9 |
5 8
|
mpd |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> A V A ) |