| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ustbasel |  |-  ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) | 
						
							| 2 |  | ustssxp |  |-  ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> u C_ ( X X. X ) ) | 
						
							| 3 | 2 | ralrimiva |  |-  ( U e. ( UnifOn ` X ) -> A. u e. U u C_ ( X X. X ) ) | 
						
							| 4 |  | pwssb |  |-  ( U C_ ~P ( X X. X ) <-> A. u e. U u C_ ( X X. X ) ) | 
						
							| 5 | 3 4 | sylibr |  |-  ( U e. ( UnifOn ` X ) -> U C_ ~P ( X X. X ) ) | 
						
							| 6 |  | elpwuni |  |-  ( ( X X. X ) e. U -> ( U C_ ~P ( X X. X ) <-> U. U = ( X X. X ) ) ) | 
						
							| 7 | 6 | biimpa |  |-  ( ( ( X X. X ) e. U /\ U C_ ~P ( X X. X ) ) -> U. U = ( X X. X ) ) | 
						
							| 8 | 1 5 7 | syl2anc |  |-  ( U e. ( UnifOn ` X ) -> U. U = ( X X. X ) ) |