Step |
Hyp |
Ref |
Expression |
1 |
|
utopustuq.1 |
|- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
2 |
|
ustimasn |
|- ( ( U e. ( UnifOn ` X ) /\ v e. U /\ p e. X ) -> ( v " { p } ) C_ X ) |
3 |
2
|
3expa |
|- ( ( ( U e. ( UnifOn ` X ) /\ v e. U ) /\ p e. X ) -> ( v " { p } ) C_ X ) |
4 |
3
|
an32s |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ v e. U ) -> ( v " { p } ) C_ X ) |
5 |
|
vex |
|- v e. _V |
6 |
5
|
imaex |
|- ( v " { p } ) e. _V |
7 |
6
|
elpw |
|- ( ( v " { p } ) e. ~P X <-> ( v " { p } ) C_ X ) |
8 |
4 7
|
sylibr |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ v e. U ) -> ( v " { p } ) e. ~P X ) |
9 |
8
|
ralrimiva |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> A. v e. U ( v " { p } ) e. ~P X ) |
10 |
|
eqid |
|- ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { p } ) ) |
11 |
10
|
rnmptss |
|- ( A. v e. U ( v " { p } ) e. ~P X -> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) |
12 |
9 11
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) |
13 |
|
mptexg |
|- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { p } ) ) e. _V ) |
14 |
|
rnexg |
|- ( ( v e. U |-> ( v " { p } ) ) e. _V -> ran ( v e. U |-> ( v " { p } ) ) e. _V ) |
15 |
|
elpwg |
|- ( ran ( v e. U |-> ( v " { p } ) ) e. _V -> ( ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X <-> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) ) |
16 |
13 14 15
|
3syl |
|- ( U e. ( UnifOn ` X ) -> ( ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X <-> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) ) |
17 |
16
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X <-> ran ( v e. U |-> ( v " { p } ) ) C_ ~P X ) ) |
18 |
12 17
|
mpbird |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ran ( v e. U |-> ( v " { p } ) ) e. ~P ~P X ) |
19 |
18 1
|
fmptd |
|- ( U e. ( UnifOn ` X ) -> N : X --> ~P ~P X ) |