Step |
Hyp |
Ref |
Expression |
1 |
|
utopustuq.1 |
|- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
2 |
|
fnresi |
|- ( _I |` X ) Fn X |
3 |
|
fnsnfv |
|- ( ( ( _I |` X ) Fn X /\ p e. X ) -> { ( ( _I |` X ) ` p ) } = ( ( _I |` X ) " { p } ) ) |
4 |
2 3
|
mpan |
|- ( p e. X -> { ( ( _I |` X ) ` p ) } = ( ( _I |` X ) " { p } ) ) |
5 |
4
|
ad4antlr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> { ( ( _I |` X ) ` p ) } = ( ( _I |` X ) " { p } ) ) |
6 |
|
ustdiag |
|- ( ( U e. ( UnifOn ` X ) /\ w e. U ) -> ( _I |` X ) C_ w ) |
7 |
6
|
ad5ant14 |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( _I |` X ) C_ w ) |
8 |
|
imass1 |
|- ( ( _I |` X ) C_ w -> ( ( _I |` X ) " { p } ) C_ ( w " { p } ) ) |
9 |
7 8
|
syl |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( ( _I |` X ) " { p } ) C_ ( w " { p } ) ) |
10 |
5 9
|
eqsstrd |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> { ( ( _I |` X ) ` p ) } C_ ( w " { p } ) ) |
11 |
|
fvex |
|- ( ( _I |` X ) ` p ) e. _V |
12 |
11
|
snss |
|- ( ( ( _I |` X ) ` p ) e. ( w " { p } ) <-> { ( ( _I |` X ) ` p ) } C_ ( w " { p } ) ) |
13 |
10 12
|
sylibr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( ( _I |` X ) ` p ) e. ( w " { p } ) ) |
14 |
|
fvresi |
|- ( p e. X -> ( ( _I |` X ) ` p ) = p ) |
15 |
14
|
eqcomd |
|- ( p e. X -> p = ( ( _I |` X ) ` p ) ) |
16 |
15
|
ad4antlr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> p = ( ( _I |` X ) ` p ) ) |
17 |
|
simpr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> a = ( w " { p } ) ) |
18 |
13 16 17
|
3eltr4d |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> p e. a ) |
19 |
1
|
ustuqtoplem |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. _V ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
20 |
19
|
elvd |
|- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
21 |
20
|
biimpa |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
22 |
18 21
|
r19.29a |
|- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> p e. a ) |