Step |
Hyp |
Ref |
Expression |
1 |
|
utopustuq.1 |
|- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
2 |
|
simpl |
|- ( ( p = q /\ v e. U ) -> p = q ) |
3 |
2
|
sneqd |
|- ( ( p = q /\ v e. U ) -> { p } = { q } ) |
4 |
3
|
imaeq2d |
|- ( ( p = q /\ v e. U ) -> ( v " { p } ) = ( v " { q } ) ) |
5 |
4
|
mpteq2dva |
|- ( p = q -> ( v e. U |-> ( v " { p } ) ) = ( v e. U |-> ( v " { q } ) ) ) |
6 |
5
|
rneqd |
|- ( p = q -> ran ( v e. U |-> ( v " { p } ) ) = ran ( v e. U |-> ( v " { q } ) ) ) |
7 |
6
|
cbvmptv |
|- ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) = ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) |
8 |
1 7
|
eqtri |
|- N = ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) |
9 |
|
simpr2 |
|- ( ( U e. ( UnifOn ` X ) /\ ( P e. X /\ q = P /\ v e. U ) ) -> q = P ) |
10 |
9
|
sneqd |
|- ( ( U e. ( UnifOn ` X ) /\ ( P e. X /\ q = P /\ v e. U ) ) -> { q } = { P } ) |
11 |
10
|
imaeq2d |
|- ( ( U e. ( UnifOn ` X ) /\ ( P e. X /\ q = P /\ v e. U ) ) -> ( v " { q } ) = ( v " { P } ) ) |
12 |
11
|
3anassrs |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ q = P ) /\ v e. U ) -> ( v " { q } ) = ( v " { P } ) ) |
13 |
12
|
mpteq2dva |
|- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ q = P ) -> ( v e. U |-> ( v " { q } ) ) = ( v e. U |-> ( v " { P } ) ) ) |
14 |
13
|
rneqd |
|- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ q = P ) -> ran ( v e. U |-> ( v " { q } ) ) = ran ( v e. U |-> ( v " { P } ) ) ) |
15 |
|
simpr |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> P e. X ) |
16 |
|
mptexg |
|- ( U e. ( UnifOn ` X ) -> ( v e. U |-> ( v " { P } ) ) e. _V ) |
17 |
|
rnexg |
|- ( ( v e. U |-> ( v " { P } ) ) e. _V -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
18 |
16 17
|
syl |
|- ( U e. ( UnifOn ` X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
19 |
18
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ran ( v e. U |-> ( v " { P } ) ) e. _V ) |
20 |
8 14 15 19
|
fvmptd2 |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( N ` P ) = ran ( v e. U |-> ( v " { P } ) ) ) |
21 |
20
|
eleq2d |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( A e. ( N ` P ) <-> A e. ran ( v e. U |-> ( v " { P } ) ) ) ) |
22 |
|
imaeq1 |
|- ( v = w -> ( v " { P } ) = ( w " { P } ) ) |
23 |
22
|
cbvmptv |
|- ( v e. U |-> ( v " { P } ) ) = ( w e. U |-> ( w " { P } ) ) |
24 |
23
|
elrnmpt |
|- ( A e. V -> ( A e. ran ( v e. U |-> ( v " { P } ) ) <-> E. w e. U A = ( w " { P } ) ) ) |
25 |
21 24
|
sylan9bb |
|- ( ( ( U e. ( UnifOn ` X ) /\ P e. X ) /\ A e. V ) -> ( A e. ( N ` P ) <-> E. w e. U A = ( w " { P } ) ) ) |