Step |
Hyp |
Ref |
Expression |
1 |
|
utoptop.1 |
|- J = ( unifTop ` U ) |
2 |
|
utoptop |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. Top ) |
3 |
1 2
|
eqeltrid |
|- ( U e. ( UnifOn ` X ) -> J e. Top ) |
4 |
|
txtop |
|- ( ( J e. Top /\ J e. Top ) -> ( J tX J ) e. Top ) |
5 |
3 3 4
|
syl2anc |
|- ( U e. ( UnifOn ` X ) -> ( J tX J ) e. Top ) |
6 |
5
|
3ad2ant1 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( J tX J ) e. Top ) |
7 |
6
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( J tX J ) e. Top ) |
8 |
|
0nei |
|- ( ( J tX J ) e. Top -> (/) e. ( ( nei ` ( J tX J ) ) ` (/) ) ) |
9 |
7 8
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> (/) e. ( ( nei ` ( J tX J ) ) ` (/) ) ) |
10 |
|
coeq1 |
|- ( M = (/) -> ( M o. V ) = ( (/) o. V ) ) |
11 |
|
co01 |
|- ( (/) o. V ) = (/) |
12 |
10 11
|
eqtrdi |
|- ( M = (/) -> ( M o. V ) = (/) ) |
13 |
12
|
coeq2d |
|- ( M = (/) -> ( V o. ( M o. V ) ) = ( V o. (/) ) ) |
14 |
|
co02 |
|- ( V o. (/) ) = (/) |
15 |
13 14
|
eqtrdi |
|- ( M = (/) -> ( V o. ( M o. V ) ) = (/) ) |
16 |
15
|
adantl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( V o. ( M o. V ) ) = (/) ) |
17 |
|
simpr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> M = (/) ) |
18 |
17
|
fveq2d |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( ( nei ` ( J tX J ) ) ` M ) = ( ( nei ` ( J tX J ) ) ` (/) ) ) |
19 |
9 16 18
|
3eltr4d |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |
20 |
6
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( J tX J ) e. Top ) |
21 |
|
simpl1 |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> U e. ( UnifOn ` X ) ) |
22 |
21 3
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> J e. Top ) |
23 |
|
simpl2l |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> V e. U ) |
24 |
|
simp3 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> M C_ ( X X. X ) ) |
25 |
24
|
sselda |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> r e. ( X X. X ) ) |
26 |
|
xp1st |
|- ( r e. ( X X. X ) -> ( 1st ` r ) e. X ) |
27 |
25 26
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( 1st ` r ) e. X ) |
28 |
1
|
utopsnnei |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 1st ` r ) e. X ) -> ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) ) |
29 |
21 23 27 28
|
syl3anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) ) |
30 |
|
xp2nd |
|- ( r e. ( X X. X ) -> ( 2nd ` r ) e. X ) |
31 |
25 30
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( 2nd ` r ) e. X ) |
32 |
1
|
utopsnnei |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 2nd ` r ) e. X ) -> ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) |
33 |
21 23 31 32
|
syl3anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) |
34 |
|
eqid |
|- U. J = U. J |
35 |
34 34
|
neitx |
|- ( ( ( J e. Top /\ J e. Top ) /\ ( ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) /\ ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) ) |
36 |
22 22 29 33 35
|
syl22anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) ) |
37 |
|
fvex |
|- ( 1st ` r ) e. _V |
38 |
|
fvex |
|- ( 2nd ` r ) e. _V |
39 |
37 38
|
xpsn |
|- ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) = { <. ( 1st ` r ) , ( 2nd ` r ) >. } |
40 |
39
|
fveq2i |
|- ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) = ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) |
41 |
36 40
|
eleqtrdi |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) ) |
42 |
24
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> M C_ ( X X. X ) ) |
43 |
|
xpss |
|- ( X X. X ) C_ ( _V X. _V ) |
44 |
|
sstr |
|- ( ( M C_ ( X X. X ) /\ ( X X. X ) C_ ( _V X. _V ) ) -> M C_ ( _V X. _V ) ) |
45 |
43 44
|
mpan2 |
|- ( M C_ ( X X. X ) -> M C_ ( _V X. _V ) ) |
46 |
|
df-rel |
|- ( Rel M <-> M C_ ( _V X. _V ) ) |
47 |
45 46
|
sylibr |
|- ( M C_ ( X X. X ) -> Rel M ) |
48 |
42 47
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> Rel M ) |
49 |
|
1st2nd |
|- ( ( Rel M /\ r e. M ) -> r = <. ( 1st ` r ) , ( 2nd ` r ) >. ) |
50 |
48 49
|
sylancom |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> r = <. ( 1st ` r ) , ( 2nd ` r ) >. ) |
51 |
50
|
sneqd |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> { r } = { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) |
52 |
51
|
fveq2d |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( nei ` ( J tX J ) ) ` { r } ) = ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) ) |
53 |
41 52
|
eleqtrrd |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
54 |
|
relxp |
|- Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) |
55 |
54
|
a1i |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) |
56 |
|
1st2nd |
|- ( ( Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
57 |
55 56
|
sylancom |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
58 |
|
simpll2 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( V e. U /\ `' V = V ) ) |
59 |
58
|
simprd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> `' V = V ) |
60 |
|
simpll1 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> U e. ( UnifOn ` X ) ) |
61 |
58
|
simpld |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> V e. U ) |
62 |
|
ustrel |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> Rel V ) |
63 |
60 61 62
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> Rel V ) |
64 |
|
xp1st |
|- ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) |
65 |
64
|
adantl |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) |
66 |
|
elrelimasn |
|- ( Rel V -> ( ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
67 |
66
|
biimpa |
|- ( ( Rel V /\ ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) -> ( 1st ` r ) V ( 1st ` z ) ) |
68 |
63 65 67
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` r ) V ( 1st ` z ) ) |
69 |
|
fvex |
|- ( 1st ` z ) e. _V |
70 |
37 69
|
brcnv |
|- ( ( 1st ` r ) `' V ( 1st ` z ) <-> ( 1st ` z ) V ( 1st ` r ) ) |
71 |
|
breq |
|- ( `' V = V -> ( ( 1st ` r ) `' V ( 1st ` z ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
72 |
70 71
|
bitr3id |
|- ( `' V = V -> ( ( 1st ` z ) V ( 1st ` r ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
73 |
72
|
biimpar |
|- ( ( `' V = V /\ ( 1st ` r ) V ( 1st ` z ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
74 |
59 68 73
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
75 |
|
simpll3 |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> M C_ ( X X. X ) ) |
76 |
|
simplr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> r e. M ) |
77 |
|
1st2ndbr |
|- ( ( Rel M /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
78 |
47 77
|
sylan |
|- ( ( M C_ ( X X. X ) /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
79 |
75 76 78
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
80 |
|
xp2nd |
|- ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) |
81 |
80
|
adantl |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) |
82 |
|
elrelimasn |
|- ( Rel V -> ( ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) <-> ( 2nd ` r ) V ( 2nd ` z ) ) ) |
83 |
82
|
biimpa |
|- ( ( Rel V /\ ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
84 |
63 81 83
|
syl2anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
85 |
69 38 37
|
3pm3.2i |
|- ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) |
86 |
|
brcogw |
|- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) /\ ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
87 |
85 86
|
mpan |
|- ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
88 |
|
fvex |
|- ( 2nd ` z ) e. _V |
89 |
69 88 38
|
3pm3.2i |
|- ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) |
90 |
|
brcogw |
|- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) /\ ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
91 |
89 90
|
mpan |
|- ( ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
92 |
87 91
|
sylan |
|- ( ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
93 |
74 79 84 92
|
syl21anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
94 |
|
df-br |
|- ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
95 |
93 94
|
sylib |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
96 |
57 95
|
eqeltrd |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z e. ( V o. ( M o. V ) ) ) |
97 |
96
|
ex |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> z e. ( V o. ( M o. V ) ) ) ) |
98 |
97
|
ssrdv |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) C_ ( V o. ( M o. V ) ) ) |
99 |
|
simp1 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> U e. ( UnifOn ` X ) ) |
100 |
|
simp2l |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> V e. U ) |
101 |
|
ustssxp |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( X X. X ) ) |
102 |
99 100 101
|
syl2anc |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> V C_ ( X X. X ) ) |
103 |
|
coss1 |
|- ( V C_ ( X X. X ) -> ( V o. ( M o. V ) ) C_ ( ( X X. X ) o. ( M o. V ) ) ) |
104 |
102 103
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ ( ( X X. X ) o. ( M o. V ) ) ) |
105 |
|
coss1 |
|- ( M C_ ( X X. X ) -> ( M o. V ) C_ ( ( X X. X ) o. V ) ) |
106 |
24 105
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( M o. V ) C_ ( ( X X. X ) o. V ) ) |
107 |
|
coss2 |
|- ( V C_ ( X X. X ) -> ( ( X X. X ) o. V ) C_ ( ( X X. X ) o. ( X X. X ) ) ) |
108 |
|
xpcoid |
|- ( ( X X. X ) o. ( X X. X ) ) = ( X X. X ) |
109 |
107 108
|
sseqtrdi |
|- ( V C_ ( X X. X ) -> ( ( X X. X ) o. V ) C_ ( X X. X ) ) |
110 |
102 109
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( ( X X. X ) o. V ) C_ ( X X. X ) ) |
111 |
106 110
|
sstrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( M o. V ) C_ ( X X. X ) ) |
112 |
|
coss2 |
|- ( ( M o. V ) C_ ( X X. X ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( ( X X. X ) o. ( X X. X ) ) ) |
113 |
112 108
|
sseqtrdi |
|- ( ( M o. V ) C_ ( X X. X ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( X X. X ) ) |
114 |
111 113
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( X X. X ) ) |
115 |
104 114
|
sstrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ ( X X. X ) ) |
116 |
|
utopbas |
|- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
117 |
1
|
unieqi |
|- U. J = U. ( unifTop ` U ) |
118 |
116 117
|
eqtr4di |
|- ( U e. ( UnifOn ` X ) -> X = U. J ) |
119 |
118
|
sqxpeqd |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) = ( U. J X. U. J ) ) |
120 |
34 34
|
txuni |
|- ( ( J e. Top /\ J e. Top ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
121 |
3 3 120
|
syl2anc |
|- ( U e. ( UnifOn ` X ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
122 |
119 121
|
eqtrd |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) = U. ( J tX J ) ) |
123 |
122
|
3ad2ant1 |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( X X. X ) = U. ( J tX J ) ) |
124 |
115 123
|
sseqtrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) |
125 |
124
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) |
126 |
|
eqid |
|- U. ( J tX J ) = U. ( J tX J ) |
127 |
126
|
ssnei2 |
|- ( ( ( ( J tX J ) e. Top /\ ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) /\ ( ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) C_ ( V o. ( M o. V ) ) /\ ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
128 |
20 53 98 125 127
|
syl22anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
129 |
128
|
ralrimiva |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
130 |
129
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
131 |
6
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( J tX J ) e. Top ) |
132 |
24 123
|
sseqtrd |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> M C_ U. ( J tX J ) ) |
133 |
132
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> M C_ U. ( J tX J ) ) |
134 |
|
simpr |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> M =/= (/) ) |
135 |
126
|
neips |
|- ( ( ( J tX J ) e. Top /\ M C_ U. ( J tX J ) /\ M =/= (/) ) -> ( ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) <-> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) ) |
136 |
131 133 134 135
|
syl3anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) <-> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) ) |
137 |
130 136
|
mpbird |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |
138 |
19 137
|
pm2.61dane |
|- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |