Step |
Hyp |
Ref |
Expression |
1 |
|
utopval |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = { a e. ~P X | A. x e. a E. v e. U ( v " { x } ) C_ a } ) |
2 |
|
ssrab2 |
|- { a e. ~P X | A. x e. a E. v e. U ( v " { x } ) C_ a } C_ ~P X |
3 |
1 2
|
eqsstrdi |
|- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) C_ ~P X ) |
4 |
|
ssidd |
|- ( U e. ( UnifOn ` X ) -> X C_ X ) |
5 |
|
ustssxp |
|- ( ( U e. ( UnifOn ` X ) /\ v e. U ) -> v C_ ( X X. X ) ) |
6 |
|
imassrn |
|- ( v " { x } ) C_ ran v |
7 |
|
rnss |
|- ( v C_ ( X X. X ) -> ran v C_ ran ( X X. X ) ) |
8 |
|
rnxpid |
|- ran ( X X. X ) = X |
9 |
7 8
|
sseqtrdi |
|- ( v C_ ( X X. X ) -> ran v C_ X ) |
10 |
6 9
|
sstrid |
|- ( v C_ ( X X. X ) -> ( v " { x } ) C_ X ) |
11 |
5 10
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ v e. U ) -> ( v " { x } ) C_ X ) |
12 |
11
|
ralrimiva |
|- ( U e. ( UnifOn ` X ) -> A. v e. U ( v " { x } ) C_ X ) |
13 |
|
ustne0 |
|- ( U e. ( UnifOn ` X ) -> U =/= (/) ) |
14 |
|
r19.2zb |
|- ( U =/= (/) <-> ( A. v e. U ( v " { x } ) C_ X -> E. v e. U ( v " { x } ) C_ X ) ) |
15 |
13 14
|
sylib |
|- ( U e. ( UnifOn ` X ) -> ( A. v e. U ( v " { x } ) C_ X -> E. v e. U ( v " { x } ) C_ X ) ) |
16 |
12 15
|
mpd |
|- ( U e. ( UnifOn ` X ) -> E. v e. U ( v " { x } ) C_ X ) |
17 |
16
|
ralrimivw |
|- ( U e. ( UnifOn ` X ) -> A. x e. X E. v e. U ( v " { x } ) C_ X ) |
18 |
|
elutop |
|- ( U e. ( UnifOn ` X ) -> ( X e. ( unifTop ` U ) <-> ( X C_ X /\ A. x e. X E. v e. U ( v " { x } ) C_ X ) ) ) |
19 |
4 17 18
|
mpbir2and |
|- ( U e. ( UnifOn ` X ) -> X e. ( unifTop ` U ) ) |
20 |
|
elpwuni |
|- ( X e. ( unifTop ` U ) -> ( ( unifTop ` U ) C_ ~P X <-> U. ( unifTop ` U ) = X ) ) |
21 |
19 20
|
syl |
|- ( U e. ( UnifOn ` X ) -> ( ( unifTop ` U ) C_ ~P X <-> U. ( unifTop ` U ) = X ) ) |
22 |
3 21
|
mpbid |
|- ( U e. ( UnifOn ` X ) -> U. ( unifTop ` U ) = X ) |
23 |
22
|
eqcomd |
|- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |