Step |
Hyp |
Ref |
Expression |
1 |
|
utoptop.1 |
|- J = ( unifTop ` U ) |
2 |
|
fveq2 |
|- ( r = p -> ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) = ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) |
3 |
2
|
eleq2d |
|- ( r = p -> ( b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) <-> b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
4 |
3
|
cbvralvw |
|- ( A. r e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) <-> A. p e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) |
5 |
|
eleq1w |
|- ( b = a -> ( b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) <-> a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
6 |
5
|
raleqbi1dv |
|- ( b = a -> ( A. p e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) <-> A. p e. a a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
7 |
4 6
|
syl5bb |
|- ( b = a -> ( A. r e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) <-> A. p e. a a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) ) ) |
8 |
7
|
cbvrabv |
|- { b e. ~P X | A. r e. b b e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` r ) } = { a e. ~P X | A. p e. a a e. ( ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) ` p ) } |
9 |
|
simpl |
|- ( ( q = p /\ v e. U ) -> q = p ) |
10 |
9
|
sneqd |
|- ( ( q = p /\ v e. U ) -> { q } = { p } ) |
11 |
10
|
imaeq2d |
|- ( ( q = p /\ v e. U ) -> ( v " { q } ) = ( v " { p } ) ) |
12 |
11
|
mpteq2dva |
|- ( q = p -> ( v e. U |-> ( v " { q } ) ) = ( v e. U |-> ( v " { p } ) ) ) |
13 |
12
|
rneqd |
|- ( q = p -> ran ( v e. U |-> ( v " { q } ) ) = ran ( v e. U |-> ( v " { p } ) ) ) |
14 |
13
|
cbvmptv |
|- ( q e. X |-> ran ( v e. U |-> ( v " { q } ) ) ) = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
15 |
1 8 14
|
utopsnneiplem |
|- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |