Description: Topology induced by a uniform structure U with its base set. (Contributed by Thierry Arnoux, 5-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | utoptopon | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. ( TopOn ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utoptop | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. Top ) |
|
2 | utopbas | |- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
|
3 | istopon | |- ( ( unifTop ` U ) e. ( TopOn ` X ) <-> ( ( unifTop ` U ) e. Top /\ X = U. ( unifTop ` U ) ) ) |
|
4 | 1 2 3 | sylanbrc | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. ( TopOn ` X ) ) |