Metamath Proof Explorer


Theorem uun0.1

Description: Convention notation form of un0.1 . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses uun0.1.1
|- ( T. -> ph )
uun0.1.2
|- ( ps -> ch )
uun0.1.3
|- ( ( T. /\ ps ) -> th )
Assertion uun0.1
|- ( ps -> th )

Proof

Step Hyp Ref Expression
1 uun0.1.1
 |-  ( T. -> ph )
2 uun0.1.2
 |-  ( ps -> ch )
3 uun0.1.3
 |-  ( ( T. /\ ps ) -> th )
4 tru
 |-  T.
5 1 2 pm3.2i
 |-  ( ( T. -> ph ) /\ ( ps -> ch ) )
6 5 3 pm3.2i
 |-  ( ( ( T. -> ph ) /\ ( ps -> ch ) ) /\ ( ( T. /\ ps ) -> th ) )
7 6 simpri
 |-  ( ( T. /\ ps ) -> th )
8 7 ex
 |-  ( T. -> ( ps -> th ) )
9 4 8 ax-mp
 |-  ( ps -> th )