Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uun111.1 | |- ( ( ph /\ ph /\ ph ) -> ps ) |
|
Assertion | uun111 | |- ( ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uun111.1 | |- ( ( ph /\ ph /\ ph ) -> ps ) |
|
2 | 3anass | |- ( ( ph /\ ph /\ ph ) <-> ( ph /\ ( ph /\ ph ) ) ) |
|
3 | anabs5 | |- ( ( ph /\ ( ph /\ ph ) ) <-> ( ph /\ ph ) ) |
|
4 | anidm | |- ( ( ph /\ ph ) <-> ph ) |
|
5 | 2 3 4 | 3bitri | |- ( ( ph /\ ph /\ ph ) <-> ph ) |
6 | 5 1 | sylbir | |- ( ph -> ps ) |