Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uun132p1.1 | |- ( ( ( ps /\ ch ) /\ ph ) -> th ) |
|
Assertion | uun132p1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uun132p1.1 | |- ( ( ( ps /\ ch ) /\ ph ) -> th ) |
|
2 | 3anass | |- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
3 | ancom | |- ( ( ph /\ ( ps /\ ch ) ) <-> ( ( ps /\ ch ) /\ ph ) ) |
|
4 | 2 3 | bitri | |- ( ( ph /\ ps /\ ch ) <-> ( ( ps /\ ch ) /\ ph ) ) |
5 | 4 1 | sylbi | |- ( ( ph /\ ps /\ ch ) -> th ) |