Metamath Proof Explorer


Theorem uun132p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun132p1.1
|- ( ( ( ps /\ ch ) /\ ph ) -> th )
Assertion uun132p1
|- ( ( ph /\ ps /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 uun132p1.1
 |-  ( ( ( ps /\ ch ) /\ ph ) -> th )
2 3anass
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
3 ancom
 |-  ( ( ph /\ ( ps /\ ch ) ) <-> ( ( ps /\ ch ) /\ ph ) )
4 2 3 bitri
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ps /\ ch ) /\ ph ) )
5 4 1 sylbi
 |-  ( ( ph /\ ps /\ ch ) -> th )