| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uun2221.1 |
|- ( ( ph /\ ph /\ ( ps /\ ph ) ) -> ch ) |
| 2 |
|
3anass |
|- ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ph /\ ( ph /\ ( ps /\ ph ) ) ) ) |
| 3 |
|
anabs5 |
|- ( ( ph /\ ( ph /\ ( ps /\ ph ) ) ) <-> ( ph /\ ( ps /\ ph ) ) ) |
| 4 |
2 3
|
bitri |
|- ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ph /\ ( ps /\ ph ) ) ) |
| 5 |
|
ancom |
|- ( ( ph /\ ps ) <-> ( ps /\ ph ) ) |
| 6 |
5
|
anbi2i |
|- ( ( ph /\ ( ph /\ ps ) ) <-> ( ph /\ ( ps /\ ph ) ) ) |
| 7 |
4 6
|
bitr4i |
|- ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ph /\ ( ph /\ ps ) ) ) |
| 8 |
|
anabs5 |
|- ( ( ph /\ ( ph /\ ps ) ) <-> ( ph /\ ps ) ) |
| 9 |
8 5
|
bitri |
|- ( ( ph /\ ( ph /\ ps ) ) <-> ( ps /\ ph ) ) |
| 10 |
7 9
|
bitri |
|- ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ps /\ ph ) ) |
| 11 |
10
|
imbi1i |
|- ( ( ( ph /\ ph /\ ( ps /\ ph ) ) -> ch ) <-> ( ( ps /\ ph ) -> ch ) ) |
| 12 |
1 11
|
mpbi |
|- ( ( ps /\ ph ) -> ch ) |