Metamath Proof Explorer


Theorem uun2221

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun2221.1
|- ( ( ph /\ ph /\ ( ps /\ ph ) ) -> ch )
Assertion uun2221
|- ( ( ps /\ ph ) -> ch )

Proof

Step Hyp Ref Expression
1 uun2221.1
 |-  ( ( ph /\ ph /\ ( ps /\ ph ) ) -> ch )
2 3anass
 |-  ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ph /\ ( ph /\ ( ps /\ ph ) ) ) )
3 anabs5
 |-  ( ( ph /\ ( ph /\ ( ps /\ ph ) ) ) <-> ( ph /\ ( ps /\ ph ) ) )
4 2 3 bitri
 |-  ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ph /\ ( ps /\ ph ) ) )
5 ancom
 |-  ( ( ph /\ ps ) <-> ( ps /\ ph ) )
6 5 anbi2i
 |-  ( ( ph /\ ( ph /\ ps ) ) <-> ( ph /\ ( ps /\ ph ) ) )
7 4 6 bitr4i
 |-  ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ph /\ ( ph /\ ps ) ) )
8 anabs5
 |-  ( ( ph /\ ( ph /\ ps ) ) <-> ( ph /\ ps ) )
9 8 5 bitri
 |-  ( ( ph /\ ( ph /\ ps ) ) <-> ( ps /\ ph ) )
10 7 9 bitri
 |-  ( ( ph /\ ph /\ ( ps /\ ph ) ) <-> ( ps /\ ph ) )
11 10 imbi1i
 |-  ( ( ( ph /\ ph /\ ( ps /\ ph ) ) -> ch ) <-> ( ( ps /\ ph ) -> ch ) )
12 1 11 mpbi
 |-  ( ( ps /\ ph ) -> ch )