Metamath Proof Explorer


Theorem uunT1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015) Proof was revised to accommodate a possible future version of df-tru . (Revised by David A. Wheeler, 8-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT1.1
|- ( ( T. /\ ph ) -> ps )
Assertion uunT1
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 uunT1.1
 |-  ( ( T. /\ ph ) -> ps )
2 orc
 |-  ( ph -> ( ph \/ -. ph ) )
3 tru
 |-  T.
4 biid
 |-  ( ph <-> ph )
5 3 4 2th
 |-  ( T. <-> ( ph <-> ph ) )
6 exmid
 |-  ( ph \/ -. ph )
7 6 a1i
 |-  ( ( ph <-> ph ) -> ( ph \/ -. ph ) )
8 biidd
 |-  ( ( ph \/ -. ph ) -> ( ph <-> ph ) )
9 7 8 impbii
 |-  ( ( ph <-> ph ) <-> ( ph \/ -. ph ) )
10 5 9 bitri
 |-  ( T. <-> ( ph \/ -. ph ) )
11 2 10 sylibr
 |-  ( ph -> T. )
12 11 1 mpancom
 |-  ( ph -> ps )