Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uunT12.1 | |- ( ( T. /\ ph /\ ps ) -> ch ) | |
| Assertion | uunT12 | |- ( ( ph /\ ps ) -> ch ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uunT12.1 | |- ( ( T. /\ ph /\ ps ) -> ch ) | |
| 2 | 3anass | |- ( ( T. /\ ph /\ ps ) <-> ( T. /\ ( ph /\ ps ) ) ) | |
| 3 | truan | |- ( ( T. /\ ( ph /\ ps ) ) <-> ( ph /\ ps ) ) | |
| 4 | 2 3 | bitri | |- ( ( T. /\ ph /\ ps ) <-> ( ph /\ ps ) ) | 
| 5 | 4 1 | sylbir | |- ( ( ph /\ ps ) -> ch ) |