Metamath Proof Explorer


Theorem uunT12p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT12p1.1
|- ( ( T. /\ ps /\ ph ) -> ch )
Assertion uunT12p1
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 uunT12p1.1
 |-  ( ( T. /\ ps /\ ph ) -> ch )
2 3anass
 |-  ( ( T. /\ ps /\ ph ) <-> ( T. /\ ( ps /\ ph ) ) )
3 truan
 |-  ( ( T. /\ ( ps /\ ph ) ) <-> ( ps /\ ph ) )
4 2 3 bitri
 |-  ( ( T. /\ ps /\ ph ) <-> ( ps /\ ph ) )
5 ancom
 |-  ( ( ph /\ ps ) <-> ( ps /\ ph ) )
6 4 5 bitr4i
 |-  ( ( T. /\ ps /\ ph ) <-> ( ph /\ ps ) )
7 6 1 sylbir
 |-  ( ( ph /\ ps ) -> ch )