| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uunT12p2.1 |
|- ( ( ph /\ T. /\ ps ) -> ch ) |
| 2 |
|
3anrot |
|- ( ( ph /\ T. /\ ps ) <-> ( T. /\ ps /\ ph ) ) |
| 3 |
|
3anass |
|- ( ( T. /\ ps /\ ph ) <-> ( T. /\ ( ps /\ ph ) ) ) |
| 4 |
2 3
|
bitri |
|- ( ( ph /\ T. /\ ps ) <-> ( T. /\ ( ps /\ ph ) ) ) |
| 5 |
|
truan |
|- ( ( T. /\ ( ps /\ ph ) ) <-> ( ps /\ ph ) ) |
| 6 |
4 5
|
bitri |
|- ( ( ph /\ T. /\ ps ) <-> ( ps /\ ph ) ) |
| 7 |
|
ancom |
|- ( ( ph /\ ps ) <-> ( ps /\ ph ) ) |
| 8 |
6 7
|
bitr4i |
|- ( ( ph /\ T. /\ ps ) <-> ( ph /\ ps ) ) |
| 9 |
8 1
|
sylbir |
|- ( ( ph /\ ps ) -> ch ) |