Metamath Proof Explorer


Theorem uunT1p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT1p1.1
|- ( ( ph /\ T. ) -> ps )
Assertion uunT1p1
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 uunT1p1.1
 |-  ( ( ph /\ T. ) -> ps )
2 ancom
 |-  ( ( ph /\ T. ) <-> ( T. /\ ph ) )
3 truan
 |-  ( ( T. /\ ph ) <-> ph )
4 2 3 bitri
 |-  ( ( ph /\ T. ) <-> ph )
5 4 1 sylbir
 |-  ( ph -> ps )