Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uunT1p1.1 | |- ( ( ph /\ T. ) -> ps ) |
|
| Assertion | uunT1p1 | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uunT1p1.1 | |- ( ( ph /\ T. ) -> ps ) |
|
| 2 | ancom | |- ( ( ph /\ T. ) <-> ( T. /\ ph ) ) |
|
| 3 | truan | |- ( ( T. /\ ph ) <-> ph ) |
|
| 4 | 2 3 | bitri | |- ( ( ph /\ T. ) <-> ph ) |
| 5 | 4 1 | sylbir | |- ( ph -> ps ) |