| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvcff.u | 
							 |-  U = ( R unitVec I )  | 
						
						
							| 2 | 
							
								
							 | 
							uvcff.y | 
							 |-  Y = ( R freeLMod I )  | 
						
						
							| 3 | 
							
								
							 | 
							uvcff.b | 
							 |-  B = ( Base ` Y )  | 
						
						
							| 4 | 
							
								
							 | 
							nzrring | 
							 |-  ( R e. NzRing -> R e. Ring )  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							uvcff | 
							 |-  ( ( R e. Ring /\ I e. W ) -> U : I --> B )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sylan | 
							 |-  ( ( R e. NzRing /\ I e. W ) -> U : I --> B )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` R ) = ( 1r ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` R ) = ( 0g ` R )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							nzrnz | 
							 |-  ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( 1r ` R ) =/= ( 0g ` R ) )  | 
						
						
							| 11 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> R e. Ring )  | 
						
						
							| 12 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> I e. W )  | 
						
						
							| 13 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> i e. I )  | 
						
						
							| 14 | 
							
								1 11 12 13 7
							 | 
							uvcvv1 | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( ( U ` i ) ` i ) = ( 1r ` R ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> j e. I )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> i =/= j )  | 
						
						
							| 17 | 
							
								16
							 | 
							necomd | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> j =/= i )  | 
						
						
							| 18 | 
							
								1 11 12 15 13 17 8
							 | 
							uvcvv0 | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( ( U ` j ) ` i ) = ( 0g ` R ) )  | 
						
						
							| 19 | 
							
								10 14 18
							 | 
							3netr4d | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( ( U ` i ) ` i ) =/= ( ( U ` j ) ` i ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fveq1 | 
							 |-  ( ( U ` i ) = ( U ` j ) -> ( ( U ` i ) ` i ) = ( ( U ` j ) ` i ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							necon3i | 
							 |-  ( ( ( U ` i ) ` i ) =/= ( ( U ` j ) ` i ) -> ( U ` i ) =/= ( U ` j ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							syl | 
							 |-  ( ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) /\ i =/= j ) -> ( U ` i ) =/= ( U ` j ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							 |-  ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) -> ( i =/= j -> ( U ` i ) =/= ( U ` j ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							necon4d | 
							 |-  ( ( ( R e. NzRing /\ I e. W ) /\ ( i e. I /\ j e. I ) ) -> ( ( U ` i ) = ( U ` j ) -> i = j ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralrimivva | 
							 |-  ( ( R e. NzRing /\ I e. W ) -> A. i e. I A. j e. I ( ( U ` i ) = ( U ` j ) -> i = j ) )  | 
						
						
							| 26 | 
							
								
							 | 
							dff13 | 
							 |-  ( U : I -1-1-> B <-> ( U : I --> B /\ A. i e. I A. j e. I ( ( U ` i ) = ( U ` j ) -> i = j ) ) )  | 
						
						
							| 27 | 
							
								6 25 26
							 | 
							sylanbrc | 
							 |-  ( ( R e. NzRing /\ I e. W ) -> U : I -1-1-> B )  |