Step |
Hyp |
Ref |
Expression |
1 |
|
uvcfval.u |
|- U = ( R unitVec I ) |
2 |
|
uvcfval.o |
|- .1. = ( 1r ` R ) |
3 |
|
uvcfval.z |
|- .0. = ( 0g ` R ) |
4 |
|
elex |
|- ( R e. V -> R e. _V ) |
5 |
|
elex |
|- ( I e. W -> I e. _V ) |
6 |
|
df-uvc |
|- unitVec = ( r e. _V , i e. _V |-> ( j e. i |-> ( k e. i |-> if ( k = j , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) |
7 |
6
|
a1i |
|- ( ( R e. _V /\ I e. _V ) -> unitVec = ( r e. _V , i e. _V |-> ( j e. i |-> ( k e. i |-> if ( k = j , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) ) |
8 |
|
simpr |
|- ( ( r = R /\ i = I ) -> i = I ) |
9 |
|
fveq2 |
|- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
10 |
9 2
|
eqtr4di |
|- ( r = R -> ( 1r ` r ) = .1. ) |
11 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
12 |
11 3
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
13 |
10 12
|
ifeq12d |
|- ( r = R -> if ( k = j , ( 1r ` r ) , ( 0g ` r ) ) = if ( k = j , .1. , .0. ) ) |
14 |
13
|
adantr |
|- ( ( r = R /\ i = I ) -> if ( k = j , ( 1r ` r ) , ( 0g ` r ) ) = if ( k = j , .1. , .0. ) ) |
15 |
8 14
|
mpteq12dv |
|- ( ( r = R /\ i = I ) -> ( k e. i |-> if ( k = j , ( 1r ` r ) , ( 0g ` r ) ) ) = ( k e. I |-> if ( k = j , .1. , .0. ) ) ) |
16 |
8 15
|
mpteq12dv |
|- ( ( r = R /\ i = I ) -> ( j e. i |-> ( k e. i |-> if ( k = j , ( 1r ` r ) , ( 0g ` r ) ) ) ) = ( j e. I |-> ( k e. I |-> if ( k = j , .1. , .0. ) ) ) ) |
17 |
16
|
adantl |
|- ( ( ( R e. _V /\ I e. _V ) /\ ( r = R /\ i = I ) ) -> ( j e. i |-> ( k e. i |-> if ( k = j , ( 1r ` r ) , ( 0g ` r ) ) ) ) = ( j e. I |-> ( k e. I |-> if ( k = j , .1. , .0. ) ) ) ) |
18 |
|
simpl |
|- ( ( R e. _V /\ I e. _V ) -> R e. _V ) |
19 |
|
simpr |
|- ( ( R e. _V /\ I e. _V ) -> I e. _V ) |
20 |
|
mptexg |
|- ( I e. _V -> ( j e. I |-> ( k e. I |-> if ( k = j , .1. , .0. ) ) ) e. _V ) |
21 |
20
|
adantl |
|- ( ( R e. _V /\ I e. _V ) -> ( j e. I |-> ( k e. I |-> if ( k = j , .1. , .0. ) ) ) e. _V ) |
22 |
7 17 18 19 21
|
ovmpod |
|- ( ( R e. _V /\ I e. _V ) -> ( R unitVec I ) = ( j e. I |-> ( k e. I |-> if ( k = j , .1. , .0. ) ) ) ) |
23 |
4 5 22
|
syl2an |
|- ( ( R e. V /\ I e. W ) -> ( R unitVec I ) = ( j e. I |-> ( k e. I |-> if ( k = j , .1. , .0. ) ) ) ) |
24 |
1 23
|
eqtrid |
|- ( ( R e. V /\ I e. W ) -> U = ( j e. I |-> ( k e. I |-> if ( k = j , .1. , .0. ) ) ) ) |