| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvcvv.u | 
							 |-  U = ( R unitVec I )  | 
						
						
							| 2 | 
							
								
							 | 
							uvcvv.r | 
							 |-  ( ph -> R e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							uvcvv.i | 
							 |-  ( ph -> I e. W )  | 
						
						
							| 4 | 
							
								
							 | 
							uvcvv.j | 
							 |-  ( ph -> J e. I )  | 
						
						
							| 5 | 
							
								
							 | 
							uvcvv0.k | 
							 |-  ( ph -> K e. I )  | 
						
						
							| 6 | 
							
								
							 | 
							uvcvv0.jk | 
							 |-  ( ph -> J =/= K )  | 
						
						
							| 7 | 
							
								
							 | 
							uvcvv0.z | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` R ) = ( 1r ` R )  | 
						
						
							| 9 | 
							
								1 8 7
							 | 
							uvcvval | 
							 |-  ( ( ( R e. V /\ I e. W /\ J e. I ) /\ K e. I ) -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , .0. ) )  | 
						
						
							| 10 | 
							
								2 3 4 5 9
							 | 
							syl31anc | 
							 |-  ( ph -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , .0. ) )  | 
						
						
							| 11 | 
							
								
							 | 
							nesym | 
							 |-  ( J =/= K <-> -. K = J )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							sylib | 
							 |-  ( ph -> -. K = J )  | 
						
						
							| 13 | 
							
								12
							 | 
							iffalsed | 
							 |-  ( ph -> if ( K = J , ( 1r ` R ) , .0. ) = .0. )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( U ` J ) ` K ) = .0. )  |