Step |
Hyp |
Ref |
Expression |
1 |
|
uvcvv.u |
|- U = ( R unitVec I ) |
2 |
|
uvcvv.r |
|- ( ph -> R e. V ) |
3 |
|
uvcvv.i |
|- ( ph -> I e. W ) |
4 |
|
uvcvv.j |
|- ( ph -> J e. I ) |
5 |
|
uvcvv0.k |
|- ( ph -> K e. I ) |
6 |
|
uvcvv0.jk |
|- ( ph -> J =/= K ) |
7 |
|
uvcvv0.z |
|- .0. = ( 0g ` R ) |
8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
9 |
1 8 7
|
uvcvval |
|- ( ( ( R e. V /\ I e. W /\ J e. I ) /\ K e. I ) -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , .0. ) ) |
10 |
2 3 4 5 9
|
syl31anc |
|- ( ph -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , .0. ) ) |
11 |
|
nesym |
|- ( J =/= K <-> -. K = J ) |
12 |
6 11
|
sylib |
|- ( ph -> -. K = J ) |
13 |
12
|
iffalsed |
|- ( ph -> if ( K = J , ( 1r ` R ) , .0. ) = .0. ) |
14 |
10 13
|
eqtrd |
|- ( ph -> ( ( U ` J ) ` K ) = .0. ) |