| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvcvv.u | 
							 |-  U = ( R unitVec I )  | 
						
						
							| 2 | 
							
								
							 | 
							uvcvv.r | 
							 |-  ( ph -> R e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							uvcvv.i | 
							 |-  ( ph -> I e. W )  | 
						
						
							| 4 | 
							
								
							 | 
							uvcvv.j | 
							 |-  ( ph -> J e. I )  | 
						
						
							| 5 | 
							
								
							 | 
							uvcvv1.o | 
							 |-  .1. = ( 1r ` R )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` R ) = ( 0g ` R )  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							uvcvval | 
							 |-  ( ( ( R e. V /\ I e. W /\ J e. I ) /\ J e. I ) -> ( ( U ` J ) ` J ) = if ( J = J , .1. , ( 0g ` R ) ) )  | 
						
						
							| 8 | 
							
								2 3 4 4 7
							 | 
							syl31anc | 
							 |-  ( ph -> ( ( U ` J ) ` J ) = if ( J = J , .1. , ( 0g ` R ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  J = J  | 
						
						
							| 10 | 
							
								
							 | 
							iftrue | 
							 |-  ( J = J -> if ( J = J , .1. , ( 0g ` R ) ) = .1. )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mp1i | 
							 |-  ( ph -> if ( J = J , .1. , ( 0g ` R ) ) = .1. )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( U ` J ) ` J ) = .1. )  |