Step |
Hyp |
Ref |
Expression |
1 |
|
uvcvv.u |
|- U = ( R unitVec I ) |
2 |
|
uvcvv.r |
|- ( ph -> R e. V ) |
3 |
|
uvcvv.i |
|- ( ph -> I e. W ) |
4 |
|
uvcvv.j |
|- ( ph -> J e. I ) |
5 |
|
uvcvv1.o |
|- .1. = ( 1r ` R ) |
6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
7 |
1 5 6
|
uvcvval |
|- ( ( ( R e. V /\ I e. W /\ J e. I ) /\ J e. I ) -> ( ( U ` J ) ` J ) = if ( J = J , .1. , ( 0g ` R ) ) ) |
8 |
2 3 4 4 7
|
syl31anc |
|- ( ph -> ( ( U ` J ) ` J ) = if ( J = J , .1. , ( 0g ` R ) ) ) |
9 |
|
eqid |
|- J = J |
10 |
|
iftrue |
|- ( J = J -> if ( J = J , .1. , ( 0g ` R ) ) = .1. ) |
11 |
9 10
|
mp1i |
|- ( ph -> if ( J = J , .1. , ( 0g ` R ) ) = .1. ) |
12 |
8 11
|
eqtrd |
|- ( ph -> ( ( U ` J ) ` J ) = .1. ) |