Step |
Hyp |
Ref |
Expression |
1 |
|
uvcvvcl2.u |
|- U = ( R unitVec I ) |
2 |
|
uvcvvcl2.b |
|- B = ( Base ` R ) |
3 |
|
uvcvvcl2.r |
|- ( ph -> R e. Ring ) |
4 |
|
uvcvvcl2.i |
|- ( ph -> I e. W ) |
5 |
|
uvcvvcl2.j |
|- ( ph -> J e. I ) |
6 |
|
uvcvvcl2.k |
|- ( ph -> K e. I ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
9 |
1 7 8
|
uvcvval |
|- ( ( ( R e. Ring /\ I e. W /\ J e. I ) /\ K e. I ) -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , ( 0g ` R ) ) ) |
10 |
3 4 5 6 9
|
syl31anc |
|- ( ph -> ( ( U ` J ) ` K ) = if ( K = J , ( 1r ` R ) , ( 0g ` R ) ) ) |
11 |
2 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
12 |
2 8
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. B ) |
13 |
11 12
|
ifcld |
|- ( R e. Ring -> if ( K = J , ( 1r ` R ) , ( 0g ` R ) ) e. B ) |
14 |
3 13
|
syl |
|- ( ph -> if ( K = J , ( 1r ` R ) , ( 0g ` R ) ) e. B ) |
15 |
10 14
|
eqeltrd |
|- ( ph -> ( ( U ` J ) ` K ) e. B ) |