Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxel.v |
|- V = ( Vtx ` G ) |
2 |
|
sneq |
|- ( v = N -> { v } = { N } ) |
3 |
2
|
difeq2d |
|- ( v = N -> ( V \ { v } ) = ( V \ { N } ) ) |
4 |
|
oveq2 |
|- ( v = N -> ( G NeighbVtx v ) = ( G NeighbVtx N ) ) |
5 |
4
|
eleq2d |
|- ( v = N -> ( n e. ( G NeighbVtx v ) <-> n e. ( G NeighbVtx N ) ) ) |
6 |
3 5
|
raleqbidv |
|- ( v = N -> ( A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) <-> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) ) |
7 |
1
|
uvtxval |
|- ( UnivVtx ` G ) = { v e. V | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } |
8 |
6 7
|
elrab2 |
|- ( N e. ( UnivVtx ` G ) <-> ( N e. V /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) ) |