Metamath Proof Explorer


Theorem uvtxisvtx

Description: A universal vertex is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 30-Oct-2020) (Proof shortened by AV, 14-Feb-2022)

Ref Expression
Hypothesis uvtxel.v
|- V = ( Vtx ` G )
Assertion uvtxisvtx
|- ( N e. ( UnivVtx ` G ) -> N e. V )

Proof

Step Hyp Ref Expression
1 uvtxel.v
 |-  V = ( Vtx ` G )
2 1 uvtxel
 |-  ( N e. ( UnivVtx ` G ) <-> ( N e. V /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) )
3 2 simplbi
 |-  ( N e. ( UnivVtx ` G ) -> N e. V )