Description: A universal vertex is a vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 30-Oct-2020) (Proof shortened by AV, 14-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uvtxel.v | |- V = ( Vtx ` G ) |
|
Assertion | uvtxisvtx | |- ( N e. ( UnivVtx ` G ) -> N e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | |- V = ( Vtx ` G ) |
|
2 | 1 | uvtxel | |- ( N e. ( UnivVtx ` G ) <-> ( N e. V /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) ) |
3 | 2 | simplbi | |- ( N e. ( UnivVtx ` G ) -> N e. V ) |