Metamath Proof Explorer


Theorem uvtxnbgrss

Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 30-Oct-2020)

Ref Expression
Hypothesis uvtxel.v
|- V = ( Vtx ` G )
Assertion uvtxnbgrss
|- ( N e. ( UnivVtx ` G ) -> ( V \ { N } ) C_ ( G NeighbVtx N ) )

Proof

Step Hyp Ref Expression
1 uvtxel.v
 |-  V = ( Vtx ` G )
2 1 vtxnbuvtx
 |-  ( N e. ( UnivVtx ` G ) -> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) )
3 dfss3
 |-  ( ( V \ { N } ) C_ ( G NeighbVtx N ) <-> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) )
4 2 3 sylibr
 |-  ( N e. ( UnivVtx ` G ) -> ( V \ { N } ) C_ ( G NeighbVtx N ) )