Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxel.v |
|- V = ( Vtx ` G ) |
2 |
1
|
vtxnbuvtx |
|- ( N e. ( UnivVtx ` G ) -> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) |
3 |
|
eleq1w |
|- ( n = v -> ( n e. ( G NeighbVtx N ) <-> v e. ( G NeighbVtx N ) ) ) |
4 |
3
|
rspcva |
|- ( ( v e. ( V \ { N } ) /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) -> v e. ( G NeighbVtx N ) ) |
5 |
|
nbgrsym |
|- ( v e. ( G NeighbVtx N ) <-> N e. ( G NeighbVtx v ) ) |
6 |
5
|
a1i |
|- ( N e. ( UnivVtx ` G ) -> ( v e. ( G NeighbVtx N ) <-> N e. ( G NeighbVtx v ) ) ) |
7 |
4 6
|
syl5ibcom |
|- ( ( v e. ( V \ { N } ) /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) -> ( N e. ( UnivVtx ` G ) -> N e. ( G NeighbVtx v ) ) ) |
8 |
7
|
expcom |
|- ( A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) -> ( v e. ( V \ { N } ) -> ( N e. ( UnivVtx ` G ) -> N e. ( G NeighbVtx v ) ) ) ) |
9 |
8
|
com23 |
|- ( A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) -> ( N e. ( UnivVtx ` G ) -> ( v e. ( V \ { N } ) -> N e. ( G NeighbVtx v ) ) ) ) |
10 |
2 9
|
mpcom |
|- ( N e. ( UnivVtx ` G ) -> ( v e. ( V \ { N } ) -> N e. ( G NeighbVtx v ) ) ) |
11 |
10
|
ralrimiv |
|- ( N e. ( UnivVtx ` G ) -> A. v e. ( V \ { N } ) N e. ( G NeighbVtx v ) ) |