Metamath Proof Explorer


Theorem uvtxnbgrvtx

Description: A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 30-Oct-2020)

Ref Expression
Hypothesis uvtxel.v
|- V = ( Vtx ` G )
Assertion uvtxnbgrvtx
|- ( N e. ( UnivVtx ` G ) -> A. v e. ( V \ { N } ) N e. ( G NeighbVtx v ) )

Proof

Step Hyp Ref Expression
1 uvtxel.v
 |-  V = ( Vtx ` G )
2 1 vtxnbuvtx
 |-  ( N e. ( UnivVtx ` G ) -> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) )
3 eleq1w
 |-  ( n = v -> ( n e. ( G NeighbVtx N ) <-> v e. ( G NeighbVtx N ) ) )
4 3 rspcva
 |-  ( ( v e. ( V \ { N } ) /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) -> v e. ( G NeighbVtx N ) )
5 nbgrsym
 |-  ( v e. ( G NeighbVtx N ) <-> N e. ( G NeighbVtx v ) )
6 5 a1i
 |-  ( N e. ( UnivVtx ` G ) -> ( v e. ( G NeighbVtx N ) <-> N e. ( G NeighbVtx v ) ) )
7 4 6 syl5ibcom
 |-  ( ( v e. ( V \ { N } ) /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) -> ( N e. ( UnivVtx ` G ) -> N e. ( G NeighbVtx v ) ) )
8 7 expcom
 |-  ( A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) -> ( v e. ( V \ { N } ) -> ( N e. ( UnivVtx ` G ) -> N e. ( G NeighbVtx v ) ) ) )
9 8 com23
 |-  ( A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) -> ( N e. ( UnivVtx ` G ) -> ( v e. ( V \ { N } ) -> N e. ( G NeighbVtx v ) ) ) )
10 2 9 mpcom
 |-  ( N e. ( UnivVtx ` G ) -> ( v e. ( V \ { N } ) -> N e. ( G NeighbVtx v ) ) )
11 10 ralrimiv
 |-  ( N e. ( UnivVtx ` G ) -> A. v e. ( V \ { N } ) N e. ( G NeighbVtx v ) )