Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxval.v |
|- V = ( Vtx ` G ) |
2 |
|
df-uvtx |
|- UnivVtx = ( g e. _V |-> { v e. ( Vtx ` g ) | A. n e. ( ( Vtx ` g ) \ { v } ) n e. ( g NeighbVtx v ) } ) |
3 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
4 |
3 1
|
eqtr4di |
|- ( g = G -> ( Vtx ` g ) = V ) |
5 |
4
|
difeq1d |
|- ( g = G -> ( ( Vtx ` g ) \ { v } ) = ( V \ { v } ) ) |
6 |
|
oveq1 |
|- ( g = G -> ( g NeighbVtx v ) = ( G NeighbVtx v ) ) |
7 |
6
|
eleq2d |
|- ( g = G -> ( n e. ( g NeighbVtx v ) <-> n e. ( G NeighbVtx v ) ) ) |
8 |
5 7
|
raleqbidv |
|- ( g = G -> ( A. n e. ( ( Vtx ` g ) \ { v } ) n e. ( g NeighbVtx v ) <-> A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) ) ) |
9 |
2 8
|
fvmptrabfv |
|- ( UnivVtx ` G ) = { v e. ( Vtx ` G ) | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } |
10 |
1
|
eqcomi |
|- ( Vtx ` G ) = V |
11 |
10
|
rabeqi |
|- { v e. ( Vtx ` G ) | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } = { v e. V | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } |
12 |
9 11
|
eqtri |
|- ( UnivVtx ` G ) = { v e. V | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } |