| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uvtxval.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | df-uvtx |  |-  UnivVtx = ( g e. _V |-> { v e. ( Vtx ` g ) | A. n e. ( ( Vtx ` g ) \ { v } ) n e. ( g NeighbVtx v ) } ) | 
						
							| 3 |  | fveq2 |  |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) | 
						
							| 4 | 3 1 | eqtr4di |  |-  ( g = G -> ( Vtx ` g ) = V ) | 
						
							| 5 | 4 | difeq1d |  |-  ( g = G -> ( ( Vtx ` g ) \ { v } ) = ( V \ { v } ) ) | 
						
							| 6 |  | oveq1 |  |-  ( g = G -> ( g NeighbVtx v ) = ( G NeighbVtx v ) ) | 
						
							| 7 | 6 | eleq2d |  |-  ( g = G -> ( n e. ( g NeighbVtx v ) <-> n e. ( G NeighbVtx v ) ) ) | 
						
							| 8 | 5 7 | raleqbidv |  |-  ( g = G -> ( A. n e. ( ( Vtx ` g ) \ { v } ) n e. ( g NeighbVtx v ) <-> A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) ) ) | 
						
							| 9 | 2 8 | fvmptrabfv |  |-  ( UnivVtx ` G ) = { v e. ( Vtx ` G ) | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } | 
						
							| 10 | 1 | eqcomi |  |-  ( Vtx ` G ) = V | 
						
							| 11 | 10 | rabeqi |  |-  { v e. ( Vtx ` G ) | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } = { v e. V | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } | 
						
							| 12 | 9 11 | eqtri |  |-  ( UnivVtx ` G ) = { v e. V | A. n e. ( V \ { v } ) n e. ( G NeighbVtx v ) } |