Metamath Proof Explorer


Theorem uz0

Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion uz0
|- ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) )

Proof

Step Hyp Ref Expression
1 dmuz
 |-  dom ZZ>= = ZZ
2 1 eqcomi
 |-  ZZ = dom ZZ>=
3 2 eleq2i
 |-  ( M e. ZZ <-> M e. dom ZZ>= )
4 3 notbii
 |-  ( -. M e. ZZ <-> -. M e. dom ZZ>= )
5 4 biimpi
 |-  ( -. M e. ZZ -> -. M e. dom ZZ>= )
6 ndmfv
 |-  ( -. M e. dom ZZ>= -> ( ZZ>= ` M ) = (/) )
7 5 6 syl
 |-  ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) )