Metamath Proof Explorer


Theorem uz2m1nn

Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion uz2m1nn
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN )

Proof

Step Hyp Ref Expression
1 eluz2b1
 |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) )
2 1z
 |-  1 e. ZZ
3 znnsub
 |-  ( ( 1 e. ZZ /\ N e. ZZ ) -> ( 1 < N <-> ( N - 1 ) e. NN ) )
4 2 3 mpan
 |-  ( N e. ZZ -> ( 1 < N <-> ( N - 1 ) e. NN ) )
5 4 biimpa
 |-  ( ( N e. ZZ /\ 1 < N ) -> ( N - 1 ) e. NN )
6 1 5 sylbi
 |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN )