Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | uz2m1nn | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b1 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) ) |
|
2 | 1z | |- 1 e. ZZ |
|
3 | znnsub | |- ( ( 1 e. ZZ /\ N e. ZZ ) -> ( 1 < N <-> ( N - 1 ) e. NN ) ) |
|
4 | 2 3 | mpan | |- ( N e. ZZ -> ( 1 < N <-> ( N - 1 ) e. NN ) ) |
5 | 4 | biimpa | |- ( ( N e. ZZ /\ 1 < N ) -> ( N - 1 ) e. NN ) |
6 | 1 5 | sylbi | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |