Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) ) |
2 |
|
2lt3 |
|- 2 < 3 |
3 |
|
2re |
|- 2 e. RR |
4 |
|
3re |
|- 3 e. RR |
5 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
6 |
|
ltletr |
|- ( ( 2 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 2 < 3 /\ 3 <_ N ) -> 2 < N ) ) |
7 |
3 4 5 6
|
mp3an12i |
|- ( N e. ZZ -> ( ( 2 < 3 /\ 3 <_ N ) -> 2 < N ) ) |
8 |
2 7
|
mpani |
|- ( N e. ZZ -> ( 3 <_ N -> 2 < N ) ) |
9 |
8
|
imp |
|- ( ( N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
10 |
9
|
3adant1 |
|- ( ( 3 e. ZZ /\ N e. ZZ /\ 3 <_ N ) -> 2 < N ) |
11 |
1 10
|
sylbi |
|- ( N e. ( ZZ>= ` 3 ) -> 2 < N ) |
12 |
|
2nn |
|- 2 e. NN |
13 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
14 |
|
nnsub |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 < N <-> ( N - 2 ) e. NN ) ) |
15 |
12 13 14
|
sylancr |
|- ( N e. ( ZZ>= ` 3 ) -> ( 2 < N <-> ( N - 2 ) e. NN ) ) |
16 |
11 15
|
mpbid |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |