Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` M ) -> N e. CC ) |
2 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
3 |
|
ax-1cn |
|- 1 e. CC |
4 |
|
addass |
|- ( ( N e. CC /\ k e. CC /\ 1 e. CC ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
5 |
3 4
|
mp3an3 |
|- ( ( N e. CC /\ k e. CC ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
6 |
1 2 5
|
syl2anr |
|- ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
7 |
6
|
adantr |
|- ( ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) /\ ( N + k ) e. ( ZZ>= ` M ) ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
8 |
|
peano2uz |
|- ( ( N + k ) e. ( ZZ>= ` M ) -> ( ( N + k ) + 1 ) e. ( ZZ>= ` M ) ) |
9 |
8
|
adantl |
|- ( ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) /\ ( N + k ) e. ( ZZ>= ` M ) ) -> ( ( N + k ) + 1 ) e. ( ZZ>= ` M ) ) |
10 |
7 9
|
eqeltrrd |
|- ( ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) /\ ( N + k ) e. ( ZZ>= ` M ) ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) |
11 |
10
|
exp31 |
|- ( k e. NN0 -> ( N e. ( ZZ>= ` M ) -> ( ( N + k ) e. ( ZZ>= ` M ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) ) |
12 |
11
|
a2d |
|- ( k e. NN0 -> ( ( N e. ( ZZ>= ` M ) -> ( N + k ) e. ( ZZ>= ` M ) ) -> ( N e. ( ZZ>= ` M ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) ) |
13 |
1
|
addid1d |
|- ( N e. ( ZZ>= ` M ) -> ( N + 0 ) = N ) |
14 |
13
|
eleq1d |
|- ( N e. ( ZZ>= ` M ) -> ( ( N + 0 ) e. ( ZZ>= ` M ) <-> N e. ( ZZ>= ` M ) ) ) |
15 |
14
|
ibir |
|- ( N e. ( ZZ>= ` M ) -> ( N + 0 ) e. ( ZZ>= ` M ) ) |
16 |
|
oveq2 |
|- ( j = 0 -> ( N + j ) = ( N + 0 ) ) |
17 |
16
|
eleq1d |
|- ( j = 0 -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + 0 ) e. ( ZZ>= ` M ) ) ) |
18 |
17
|
imbi2d |
|- ( j = 0 -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + 0 ) e. ( ZZ>= ` M ) ) ) ) |
19 |
|
oveq2 |
|- ( j = k -> ( N + j ) = ( N + k ) ) |
20 |
19
|
eleq1d |
|- ( j = k -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + k ) e. ( ZZ>= ` M ) ) ) |
21 |
20
|
imbi2d |
|- ( j = k -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + k ) e. ( ZZ>= ` M ) ) ) ) |
22 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( N + j ) = ( N + ( k + 1 ) ) ) |
23 |
22
|
eleq1d |
|- ( j = ( k + 1 ) -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) |
24 |
23
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) ) |
25 |
|
oveq2 |
|- ( j = K -> ( N + j ) = ( N + K ) ) |
26 |
25
|
eleq1d |
|- ( j = K -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + K ) e. ( ZZ>= ` M ) ) ) |
27 |
26
|
imbi2d |
|- ( j = K -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + K ) e. ( ZZ>= ` M ) ) ) ) |
28 |
12 15 18 21 24 27
|
nn0indALT |
|- ( K e. NN0 -> ( N e. ( ZZ>= ` M ) -> ( N + K ) e. ( ZZ>= ` M ) ) ) |
29 |
28
|
impcom |
|- ( ( N e. ( ZZ>= ` M ) /\ K e. NN0 ) -> ( N + K ) e. ( ZZ>= ` M ) ) |