Metamath Proof Explorer


Theorem uzf

Description: The domain and range of the upper integers function. (Contributed by Scott Fenton, 8-Aug-2013) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion uzf
|- ZZ>= : ZZ --> ~P ZZ

Proof

Step Hyp Ref Expression
1 zex
 |-  ZZ e. _V
2 ssrab2
 |-  { k e. ZZ | j <_ k } C_ ZZ
3 1 2 elpwi2
 |-  { k e. ZZ | j <_ k } e. ~P ZZ
4 3 rgenw
 |-  A. j e. ZZ { k e. ZZ | j <_ k } e. ~P ZZ
5 df-uz
 |-  ZZ>= = ( j e. ZZ |-> { k e. ZZ | j <_ k } )
6 5 fmpt
 |-  ( A. j e. ZZ { k e. ZZ | j <_ k } e. ~P ZZ <-> ZZ>= : ZZ --> ~P ZZ )
7 4 6 mpbi
 |-  ZZ>= : ZZ --> ~P ZZ