| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uzfbas.1 | 
							 |-  Z = ( ZZ>= ` M )  | 
						
						
							| 2 | 
							
								1
							 | 
							uzrest | 
							 |-  ( M e. ZZ -> ( ran ZZ>= |`t Z ) = ( ZZ>= " Z ) )  | 
						
						
							| 3 | 
							
								
							 | 
							zfbas | 
							 |-  ran ZZ>= e. ( fBas ` ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							0nelfb | 
							 |-  ( ran ZZ>= e. ( fBas ` ZZ ) -> -. (/) e. ran ZZ>= )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ax-mp | 
							 |-  -. (/) e. ran ZZ>=  | 
						
						
							| 6 | 
							
								
							 | 
							imassrn | 
							 |-  ( ZZ>= " Z ) C_ ran ZZ>=  | 
						
						
							| 7 | 
							
								2 6
							 | 
							eqsstrdi | 
							 |-  ( M e. ZZ -> ( ran ZZ>= |`t Z ) C_ ran ZZ>= )  | 
						
						
							| 8 | 
							
								7
							 | 
							sseld | 
							 |-  ( M e. ZZ -> ( (/) e. ( ran ZZ>= |`t Z ) -> (/) e. ran ZZ>= ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							mtoi | 
							 |-  ( M e. ZZ -> -. (/) e. ( ran ZZ>= |`t Z ) )  | 
						
						
							| 10 | 
							
								
							 | 
							uzssz | 
							 |-  ( ZZ>= ` M ) C_ ZZ  | 
						
						
							| 11 | 
							
								1 10
							 | 
							eqsstri | 
							 |-  Z C_ ZZ  | 
						
						
							| 12 | 
							
								
							 | 
							trfbas2 | 
							 |-  ( ( ran ZZ>= e. ( fBas ` ZZ ) /\ Z C_ ZZ ) -> ( ( ran ZZ>= |`t Z ) e. ( fBas ` Z ) <-> -. (/) e. ( ran ZZ>= |`t Z ) ) )  | 
						
						
							| 13 | 
							
								3 11 12
							 | 
							mp2an | 
							 |-  ( ( ran ZZ>= |`t Z ) e. ( fBas ` Z ) <-> -. (/) e. ( ran ZZ>= |`t Z ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							sylibr | 
							 |-  ( M e. ZZ -> ( ran ZZ>= |`t Z ) e. ( fBas ` Z ) )  | 
						
						
							| 15 | 
							
								2 14
							 | 
							eqeltrrd | 
							 |-  ( M e. ZZ -> ( ZZ>= " Z ) e. ( fBas ` Z ) )  |