Metamath Proof Explorer


Theorem uzid3

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis uzid3.1
|- Z = ( ZZ>= ` M )
Assertion uzid3
|- ( N e. Z -> N e. ( ZZ>= ` N ) )

Proof

Step Hyp Ref Expression
1 uzid3.1
 |-  Z = ( ZZ>= ` M )
2 1 eleq2i
 |-  ( N e. Z <-> N e. ( ZZ>= ` M ) )
3 2 biimpi
 |-  ( N e. Z -> N e. ( ZZ>= ` M ) )
4 uzid2
 |-  ( N e. ( ZZ>= ` M ) -> N e. ( ZZ>= ` N ) )
5 3 4 syl
 |-  ( N e. Z -> N e. ( ZZ>= ` N ) )