Metamath Proof Explorer


Theorem uzidd

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis uzidd.1
|- ( ph -> M e. ZZ )
Assertion uzidd
|- ( ph -> M e. ( ZZ>= ` M ) )

Proof

Step Hyp Ref Expression
1 uzidd.1
 |-  ( ph -> M e. ZZ )
2 uzid
 |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) )
3 1 2 syl
 |-  ( ph -> M e. ( ZZ>= ` M ) )