Metamath Proof Explorer


Theorem uzidd2

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzidd2.1
|- ( ph -> M e. ZZ )
uzidd2.2
|- Z = ( ZZ>= ` M )
Assertion uzidd2
|- ( ph -> M e. Z )

Proof

Step Hyp Ref Expression
1 uzidd2.1
 |-  ( ph -> M e. ZZ )
2 uzidd2.2
 |-  Z = ( ZZ>= ` M )
3 1 uzidd
 |-  ( ph -> M e. ( ZZ>= ` M ) )
4 3 2 eleqtrrdi
 |-  ( ph -> M e. Z )