Step |
Hyp |
Ref |
Expression |
1 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
2 |
|
ffn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
3 |
1 2
|
ax-mp |
|- ZZ>= Fn ZZ |
4 |
|
fvelrnb |
|- ( ZZ>= Fn ZZ -> ( A e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = A ) ) |
5 |
3 4
|
ax-mp |
|- ( A e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = A ) |
6 |
|
fvelrnb |
|- ( ZZ>= Fn ZZ -> ( B e. ran ZZ>= <-> E. y e. ZZ ( ZZ>= ` y ) = B ) ) |
7 |
3 6
|
ax-mp |
|- ( B e. ran ZZ>= <-> E. y e. ZZ ( ZZ>= ` y ) = B ) |
8 |
|
ineq1 |
|- ( ( ZZ>= ` x ) = A -> ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) = ( A i^i ( ZZ>= ` y ) ) ) |
9 |
8
|
eleq1d |
|- ( ( ZZ>= ` x ) = A -> ( ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) e. ran ZZ>= <-> ( A i^i ( ZZ>= ` y ) ) e. ran ZZ>= ) ) |
10 |
|
ineq2 |
|- ( ( ZZ>= ` y ) = B -> ( A i^i ( ZZ>= ` y ) ) = ( A i^i B ) ) |
11 |
10
|
eleq1d |
|- ( ( ZZ>= ` y ) = B -> ( ( A i^i ( ZZ>= ` y ) ) e. ran ZZ>= <-> ( A i^i B ) e. ran ZZ>= ) ) |
12 |
|
uzin |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) = ( ZZ>= ` if ( x <_ y , y , x ) ) ) |
13 |
|
ifcl |
|- ( ( y e. ZZ /\ x e. ZZ ) -> if ( x <_ y , y , x ) e. ZZ ) |
14 |
13
|
ancoms |
|- ( ( x e. ZZ /\ y e. ZZ ) -> if ( x <_ y , y , x ) e. ZZ ) |
15 |
|
fnfvelrn |
|- ( ( ZZ>= Fn ZZ /\ if ( x <_ y , y , x ) e. ZZ ) -> ( ZZ>= ` if ( x <_ y , y , x ) ) e. ran ZZ>= ) |
16 |
3 14 15
|
sylancr |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( ZZ>= ` if ( x <_ y , y , x ) ) e. ran ZZ>= ) |
17 |
12 16
|
eqeltrd |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( ZZ>= ` x ) i^i ( ZZ>= ` y ) ) e. ran ZZ>= ) |
18 |
5 7 9 11 17
|
2gencl |
|- ( ( A e. ran ZZ>= /\ B e. ran ZZ>= ) -> ( A i^i B ) e. ran ZZ>= ) |