| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzind4s.1 |  |-  ( M e. ZZ -> [. M / k ]. ph ) | 
						
							| 2 |  | uzind4s.2 |  |-  ( k e. ( ZZ>= ` M ) -> ( ph -> [. ( k + 1 ) / k ]. ph ) ) | 
						
							| 3 |  | dfsbcq2 |  |-  ( j = M -> ( [ j / k ] ph <-> [. M / k ]. ph ) ) | 
						
							| 4 |  | sbequ |  |-  ( j = m -> ( [ j / k ] ph <-> [ m / k ] ph ) ) | 
						
							| 5 |  | dfsbcq2 |  |-  ( j = ( m + 1 ) -> ( [ j / k ] ph <-> [. ( m + 1 ) / k ]. ph ) ) | 
						
							| 6 |  | dfsbcq2 |  |-  ( j = N -> ( [ j / k ] ph <-> [. N / k ]. ph ) ) | 
						
							| 7 |  | nfv |  |-  F/ k m e. ( ZZ>= ` M ) | 
						
							| 8 |  | nfs1v |  |-  F/ k [ m / k ] ph | 
						
							| 9 |  | nfsbc1v |  |-  F/ k [. ( m + 1 ) / k ]. ph | 
						
							| 10 | 8 9 | nfim |  |-  F/ k ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) | 
						
							| 11 | 7 10 | nfim |  |-  F/ k ( m e. ( ZZ>= ` M ) -> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) | 
						
							| 12 |  | eleq1w |  |-  ( k = m -> ( k e. ( ZZ>= ` M ) <-> m e. ( ZZ>= ` M ) ) ) | 
						
							| 13 |  | sbequ12 |  |-  ( k = m -> ( ph <-> [ m / k ] ph ) ) | 
						
							| 14 |  | oveq1 |  |-  ( k = m -> ( k + 1 ) = ( m + 1 ) ) | 
						
							| 15 | 14 | sbceq1d |  |-  ( k = m -> ( [. ( k + 1 ) / k ]. ph <-> [. ( m + 1 ) / k ]. ph ) ) | 
						
							| 16 | 13 15 | imbi12d |  |-  ( k = m -> ( ( ph -> [. ( k + 1 ) / k ]. ph ) <-> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) ) | 
						
							| 17 | 12 16 | imbi12d |  |-  ( k = m -> ( ( k e. ( ZZ>= ` M ) -> ( ph -> [. ( k + 1 ) / k ]. ph ) ) <-> ( m e. ( ZZ>= ` M ) -> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) ) ) | 
						
							| 18 | 11 17 2 | chvarfv |  |-  ( m e. ( ZZ>= ` M ) -> ( [ m / k ] ph -> [. ( m + 1 ) / k ]. ph ) ) | 
						
							| 19 | 3 4 5 6 1 18 | uzind4 |  |-  ( N e. ( ZZ>= ` M ) -> [. N / k ]. ph ) |