Step |
Hyp |
Ref |
Expression |
1 |
|
uzind4s2.1 |
|- ( M e. ZZ -> [. M / j ]. ph ) |
2 |
|
uzind4s2.2 |
|- ( k e. ( ZZ>= ` M ) -> ( [. k / j ]. ph -> [. ( k + 1 ) / j ]. ph ) ) |
3 |
|
dfsbcq |
|- ( m = M -> ( [. m / j ]. ph <-> [. M / j ]. ph ) ) |
4 |
|
dfsbcq |
|- ( m = n -> ( [. m / j ]. ph <-> [. n / j ]. ph ) ) |
5 |
|
dfsbcq |
|- ( m = ( n + 1 ) -> ( [. m / j ]. ph <-> [. ( n + 1 ) / j ]. ph ) ) |
6 |
|
dfsbcq |
|- ( m = N -> ( [. m / j ]. ph <-> [. N / j ]. ph ) ) |
7 |
|
dfsbcq |
|- ( k = n -> ( [. k / j ]. ph <-> [. n / j ]. ph ) ) |
8 |
|
oveq1 |
|- ( k = n -> ( k + 1 ) = ( n + 1 ) ) |
9 |
8
|
sbceq1d |
|- ( k = n -> ( [. ( k + 1 ) / j ]. ph <-> [. ( n + 1 ) / j ]. ph ) ) |
10 |
7 9
|
imbi12d |
|- ( k = n -> ( ( [. k / j ]. ph -> [. ( k + 1 ) / j ]. ph ) <-> ( [. n / j ]. ph -> [. ( n + 1 ) / j ]. ph ) ) ) |
11 |
10 2
|
vtoclga |
|- ( n e. ( ZZ>= ` M ) -> ( [. n / j ]. ph -> [. ( n + 1 ) / j ]. ph ) ) |
12 |
3 4 5 6 1 11
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> [. N / j ]. ph ) |