Description: An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uzinf.1 | |- Z = ( ZZ>= ` M ) |
|
Assertion | uzinf | |- ( M e. ZZ -> -. Z e. Fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzinf.1 | |- Z = ( ZZ>= ` M ) |
|
2 | ominf | |- -. _om e. Fin |
|
3 | 1 | uzenom | |- ( M e. ZZ -> Z ~~ _om ) |
4 | enfi | |- ( Z ~~ _om -> ( Z e. Fin <-> _om e. Fin ) ) |
|
5 | 3 4 | syl | |- ( M e. ZZ -> ( Z e. Fin <-> _om e. Fin ) ) |
6 | 2 5 | mtbiri | |- ( M e. ZZ -> -. Z e. Fin ) |