Metamath Proof Explorer


Theorem uzinf

Description: An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis uzinf.1
|- Z = ( ZZ>= ` M )
Assertion uzinf
|- ( M e. ZZ -> -. Z e. Fin )

Proof

Step Hyp Ref Expression
1 uzinf.1
 |-  Z = ( ZZ>= ` M )
2 ominf
 |-  -. _om e. Fin
3 1 uzenom
 |-  ( M e. ZZ -> Z ~~ _om )
4 enfi
 |-  ( Z ~~ _om -> ( Z e. Fin <-> _om e. Fin ) )
5 3 4 syl
 |-  ( M e. ZZ -> ( Z e. Fin <-> _om e. Fin ) )
6 2 5 mtbiri
 |-  ( M e. ZZ -> -. Z e. Fin )