Step |
Hyp |
Ref |
Expression |
1 |
|
uzinfi.1 |
|- M e. ZZ |
2 |
|
ltso |
|- < Or RR |
3 |
2
|
a1i |
|- ( M e. ZZ -> < Or RR ) |
4 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
5 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
6 |
|
eluz2 |
|- ( k e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ k e. ZZ /\ M <_ k ) ) |
7 |
4
|
adantr |
|- ( ( M e. ZZ /\ k e. ZZ ) -> M e. RR ) |
8 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
9 |
8
|
adantl |
|- ( ( M e. ZZ /\ k e. ZZ ) -> k e. RR ) |
10 |
7 9
|
lenltd |
|- ( ( M e. ZZ /\ k e. ZZ ) -> ( M <_ k <-> -. k < M ) ) |
11 |
10
|
biimp3a |
|- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> -. k < M ) |
12 |
11
|
a1d |
|- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> ( M e. ZZ -> -. k < M ) ) |
13 |
6 12
|
sylbi |
|- ( k e. ( ZZ>= ` M ) -> ( M e. ZZ -> -. k < M ) ) |
14 |
13
|
impcom |
|- ( ( M e. ZZ /\ k e. ( ZZ>= ` M ) ) -> -. k < M ) |
15 |
3 4 5 14
|
infmin |
|- ( M e. ZZ -> inf ( ( ZZ>= ` M ) , RR , < ) = M ) |
16 |
1 15
|
ax-mp |
|- inf ( ( ZZ>= ` M ) , RR , < ) = M |