Step |
Hyp |
Ref |
Expression |
1 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
2 |
1
|
a1d |
|- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> M e. ZZ ) ) |
3 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
4 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
5 |
3 4
|
syl |
|- ( N e. ( ZZ>= ` M ) -> ( N - 1 ) e. ZZ ) |
6 |
5
|
a1d |
|- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> ( N - 1 ) e. ZZ ) ) |
7 |
|
df-ne |
|- ( N =/= M <-> -. N = M ) |
8 |
|
eluzle |
|- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
9 |
1
|
zred |
|- ( N e. ( ZZ>= ` M ) -> M e. RR ) |
10 |
|
eluzelre |
|- ( N e. ( ZZ>= ` M ) -> N e. RR ) |
11 |
9 10
|
ltlend |
|- ( N e. ( ZZ>= ` M ) -> ( M < N <-> ( M <_ N /\ N =/= M ) ) ) |
12 |
11
|
biimprd |
|- ( N e. ( ZZ>= ` M ) -> ( ( M <_ N /\ N =/= M ) -> M < N ) ) |
13 |
8 12
|
mpand |
|- ( N e. ( ZZ>= ` M ) -> ( N =/= M -> M < N ) ) |
14 |
7 13
|
syl5bir |
|- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> M < N ) ) |
15 |
|
zltlem1 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> M <_ ( N - 1 ) ) ) |
16 |
1 3 15
|
syl2anc |
|- ( N e. ( ZZ>= ` M ) -> ( M < N <-> M <_ ( N - 1 ) ) ) |
17 |
14 16
|
sylibd |
|- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> M <_ ( N - 1 ) ) ) |
18 |
2 6 17
|
3jcad |
|- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> ( M e. ZZ /\ ( N - 1 ) e. ZZ /\ M <_ ( N - 1 ) ) ) ) |
19 |
|
eluz2 |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( N - 1 ) e. ZZ /\ M <_ ( N - 1 ) ) ) |
20 |
18 19
|
syl6ibr |
|- ( N e. ( ZZ>= ` M ) -> ( -. N = M -> ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
21 |
20
|
orrd |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |