Metamath Proof Explorer


Theorem uzn0bi

Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion uzn0bi
|- ( ( ZZ>= ` M ) =/= (/) <-> M e. ZZ )

Proof

Step Hyp Ref Expression
1 uz0
 |-  ( -. M e. ZZ -> ( ZZ>= ` M ) = (/) )
2 1 adantl
 |-  ( ( ( ZZ>= ` M ) =/= (/) /\ -. M e. ZZ ) -> ( ZZ>= ` M ) = (/) )
3 neneq
 |-  ( ( ZZ>= ` M ) =/= (/) -> -. ( ZZ>= ` M ) = (/) )
4 3 adantr
 |-  ( ( ( ZZ>= ` M ) =/= (/) /\ -. M e. ZZ ) -> -. ( ZZ>= ` M ) = (/) )
5 2 4 condan
 |-  ( ( ZZ>= ` M ) =/= (/) -> M e. ZZ )
6 id
 |-  ( M e. ZZ -> M e. ZZ )
7 eqid
 |-  ( ZZ>= ` M ) = ( ZZ>= ` M )
8 6 7 uzn0d
 |-  ( M e. ZZ -> ( ZZ>= ` M ) =/= (/) )
9 5 8 impbii
 |-  ( ( ZZ>= ` M ) =/= (/) <-> M e. ZZ )