Metamath Proof Explorer


Theorem uzn0d

Description: The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzn0d.1
|- ( ph -> M e. ZZ )
uzn0d.2
|- Z = ( ZZ>= ` M )
Assertion uzn0d
|- ( ph -> Z =/= (/) )

Proof

Step Hyp Ref Expression
1 uzn0d.1
 |-  ( ph -> M e. ZZ )
2 uzn0d.2
 |-  Z = ( ZZ>= ` M )
3 1 2 uzidd2
 |-  ( ph -> M e. Z )
4 3 ne0d
 |-  ( ph -> Z =/= (/) )