Metamath Proof Explorer
Description: The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
uzn0d.1 |
|- ( ph -> M e. ZZ ) |
|
|
uzn0d.2 |
|- Z = ( ZZ>= ` M ) |
|
Assertion |
uzn0d |
|- ( ph -> Z =/= (/) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
uzn0d.1 |
|- ( ph -> M e. ZZ ) |
2 |
|
uzn0d.2 |
|- Z = ( ZZ>= ` M ) |
3 |
1 2
|
uzidd2 |
|- ( ph -> M e. Z ) |
4 |
3
|
ne0d |
|- ( ph -> Z =/= (/) ) |