Metamath Proof Explorer


Theorem uznfz

Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013)

Ref Expression
Assertion uznfz
|- ( K e. ( ZZ>= ` N ) -> -. K e. ( M ... ( N - 1 ) ) )

Proof

Step Hyp Ref Expression
1 eluzle
 |-  ( K e. ( ZZ>= ` N ) -> N <_ K )
2 eluzel2
 |-  ( K e. ( ZZ>= ` N ) -> N e. ZZ )
3 elfzel1
 |-  ( K e. ( M ... ( N - 1 ) ) -> M e. ZZ )
4 elfzm11
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ... ( N - 1 ) ) <-> ( K e. ZZ /\ M <_ K /\ K < N ) ) )
5 simp3
 |-  ( ( K e. ZZ /\ M <_ K /\ K < N ) -> K < N )
6 4 5 syl6bi
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( K e. ( M ... ( N - 1 ) ) -> K < N ) )
7 6 impancom
 |-  ( ( M e. ZZ /\ K e. ( M ... ( N - 1 ) ) ) -> ( N e. ZZ -> K < N ) )
8 3 7 mpancom
 |-  ( K e. ( M ... ( N - 1 ) ) -> ( N e. ZZ -> K < N ) )
9 2 8 syl5com
 |-  ( K e. ( ZZ>= ` N ) -> ( K e. ( M ... ( N - 1 ) ) -> K < N ) )
10 eluzelz
 |-  ( K e. ( ZZ>= ` N ) -> K e. ZZ )
11 zre
 |-  ( K e. ZZ -> K e. RR )
12 zre
 |-  ( N e. ZZ -> N e. RR )
13 ltnle
 |-  ( ( K e. RR /\ N e. RR ) -> ( K < N <-> -. N <_ K ) )
14 11 12 13 syl2an
 |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> -. N <_ K ) )
15 10 2 14 syl2anc
 |-  ( K e. ( ZZ>= ` N ) -> ( K < N <-> -. N <_ K ) )
16 9 15 sylibd
 |-  ( K e. ( ZZ>= ` N ) -> ( K e. ( M ... ( N - 1 ) ) -> -. N <_ K ) )
17 1 16 mt2d
 |-  ( K e. ( ZZ>= ` N ) -> -. K e. ( M ... ( N - 1 ) ) )